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Introduction 

The FITBIR (Federal Interagency Traumatic Brain Injury Research) informatics systems makes available 

a unique large collection of traumatic brain injury (TBI) patients with a sub-population of post- traumatic 

epilepsy (PTE) cases. This offers a unique opportunity to study the relationship between TBI and epilepsy, 

and potentially to discover biomarkers for the location and types of lesions that have a higher likelihood of 

leading to PTE. To tackle this problem, we ultimately need to investigate not only lesions but also the brain 

networks that they affect, identified either from diffusion or functional MRI. As a step towards automated 

analysis of the large databases such as those in the FITBIR system, here we describe a method for automatic 

delineation of brain lesions from multispectral (T1, T2, FLAIR) MRI. 

Methods 

We used MRI datasets from 110 subjects from the Maryland MagNeTs study of neurotrauma 

(https://fitbir.nih.gov) for training where no ground truth was given. We split this dataset into 100 subjects 

for training and 10 subjects for validation. We used another 15 subjects from the ISLES (The Ischemic 

Stroke Lesion Segmentation) database (Maier et al. 2017) for testing and performance evaluation. While 

these later images are not from TBI patients, they present a similar challenge and have the advantage that 

all lesions have been hand segmented for validation purposes. Both datasets consist of images with sparse 

lesions in three modalities (T1, T2, FLAIR). The three modality images were co-registered to the MNI atlas 

and re-sampled to 1mm isotropic resolution. Skull and other non-brain tissue were removed using 

BrainSuite1. All the images were then normalized to a range between 0 and 1. To detect lesions in MR 

images without knowing the ground truth, we trained a variational autoencoder (VAE)2 model to efficiently 

represent normal brain structures in a low dimensional space. For our purposes, the optimal VAE when 

trained will be able to accurately encode (and decode) normal brain structures but not lesions. Specifically, 

here we used a deep VAE due to the robustness of its latent space representations. The deep VAE consists 

of four consecutive blocks of convolutional layers, max-pooling layers and rectified linear unit activation 

function (ReLU) for the encoder and four deconvolutional layers, up-sampling layers and ReLU for the 

decoder. Finally, at the output, a median filter of size 7x7 is applied to remove small errors. An error map 

between the reconstructed and the original image was generated for each image to segment lesions. These 

lesion error maps were clipped between (0,1) to identify hyperintensities in FLAIR and then binarized 

through thresholding. Varying the threshold used to identify lesions was used to generate a Receiver 

Operating Characteristic (ROC) curve to quantitatively evaluate performance. We also measured the area 

under the curve (AUC) in the ROC plot. For comparison purposes, we also applied a (non-variational) 

regular autoencoder with similar architecture to the same datasets. 

Results 

Fig. 1 (A) shows example slices from the validation set of the original FLAIR image in the 1st row. The 

reconstructed images and the error maps using the deep VAE are shown in the 2nd and 3rd rows and their 

counterparts for the regular autoencoder are shown in the 4th and 5th rows. In contrast to the regular 

autoencoder where lesions were also encoded into the latent space, our deep VAE reconstructed brain 

images without encoding lesions as illustrated in the error maps. Fig. 1 (B) shows results for the test dataset 
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where the additional row (last row) shows the ground truth (hand segmentation). Similar to (A), the lesions 

were not encoded by our deep VAE model, thus were successfully identified in the error maps. The 

detection results matched well with the manual segmentation shown in the ground truth images. Fig. 2 

shows the ROC curves when applying different thresholds to the error maps and a 0.89 AUC was achieved 

using our deep VAE model as opposed to 0.70 using the regular autoencoder. The average Dice coefficient 

across subjects for the deep VAE was 0.55 and for the regular autoencoder was 0.06 at a threshold of 0.1. 

Conclusion 

Delineation of brain lesions from MR images can be difficult and time consuming, particularly for research 

studies of large datasets. Our deep VAE network was able to represent normal brain structures without 

encoding lesions and generate error maps that facilitate lesion detection. 
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