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ABSTRACT  

Spontaneous brain activity is an important biomarker for various neurological and psychological conditions and can be 

measured using resting functional Magnetic Resonance Imaging (rfMRI). Since brain activity during rest is spontaneous, 

it is not possible to directly compare rfMRI time-courses across subjects.  Moreover, the spatial configuration of 

functionally specialized brain regions can vary across subjects throughout the cortex limiting our ability to make precise 

spatial comparisons.  We describe a new approach to jointly align and synchronize fMRI data in space and time across a 

group of subjects. We build on previously described methods for inter-subject spatial “Hyper-Alignment” and temporal 

synchronization through the “BrainSync” transform. We first describe BrainSync Alignment (BSA), a group-based 

extension of the pair-wise BrainSync transform, that jointly synchronizes resting or task fMRI data across time for multiple 

subjects. We then explore the combination of BSA with Response Hyper-Alignment (RHA) and compare with 
Connectivity Hyper-Alignment (CHA), an alternative approach to spatial alignment based on resting fMRI. The result of 

applying RHA and BSA is both to produce improved functional spatial correspondence across a group of subjects, and to 

align their time-series so that, even for spontaneous resting data, we see highly correlated temporal dynamics at 

homologous locations across the group. These spatiotemporally aligned data can then be used as an atlas in future 

applications. We explore the relative performance of BSA/RHA and CHA by computing spatial maps of inter-subject 

correlation of spatially aligned and synchronized rfMRI data. We also perform a validation study by applying the spatial 

transforms to z-score maps from an independent task fMRI dataset. Finally, we also explore application of these spatio-

temporal alignment methods directly to task fMRI data.  

Keywords: Group studies, Resting fMRI, Synchronization. 

1. INTRODUCTION 

Features derived from resting fMRI (rfMRI) data are increasingly being used as biomarkers for various neurological 

conditions, studying brain development, and investigating group differences1. The states and timing of activity in dynamic 

functional networks in rfMRI, however, are not synchronized across subjects. This presents a challenge in investigating 

group differences and comparing dynamics directly from the rfMRI time series2,3. Most studies analyze rfMRI by 

measuring functional connectivity between different brain regions through correlations computed from their time-series. 

Alternatively, group independent component analysis (ICA) can be used to decompose rfMRI data into either spatially or 

temporally independent components4. In common with correlation-based analysis, ICA approaches do not allow direct 

comparison of dynamics across subjects. Moreover, the spatial distribution of functional regions in the brain is variable 
across subjects and anatomical feature-driven cortical surface registration methods5–7 do not precisely align regions of  

functional specialization across subjects8. These limitations of existing methods has led to the development of alternative 

approaches that seek to perform spatial and/or temporal alignment using rfMRI data.  

A series of recently developed techniques introduce a different perspective on group analysis of task and resting fMRI8–11. 

These techniques apply an orthogonal linear transform to input fMRI data with respect to their temporal or spatial 

coordinates to generate a transformed representation that in some sense matches the data across subjects. Response 

HyperAlignment (RHA) aligns the subjects’ data spatially by applying a local orthogonal transform in the spatial domain 
to maximize the similarity of response profiles in a set of task fMRI data. RHA effectively uses linear combinations of 

signals in a local group of voxels from one subject to best approximate those in the same anatomical region in another 

subject or group average. This can be viewed as a method for functionally-based inter-subject spatial alignment that does 

not enforce any topological restrictions on the spatial mapping but instead uses linear combinations of the data from a local 
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neighborhood in one subject to produce a spatial correspondence in the other9. Connectivity HyperAlignment (CHA)11 is 

an extension of RHA for resting fMRI that uses connectivity profiles or a correlation matrix rather than the time-series 

themselves as a feature to perform spatial alignment. RHA and CHA can combine multiple local orthogonal transforms to 

perform spatial alignment of the entire cerebral cortex9,11. 

While the RHA and CHA techniques address spatial alignment, the BrainSync transform aligns subject data temporally by 
applying an orthogonal transform to the time series rather than spatially. BrainSync exploits the similar correlation 

structure in rfMRI data across subjects to align rfMRI, although it can also be applied to task fMRI10. The result of applying 

BrainSync is to modify the set of resting time-series for one subject so that they are approximately equal to those of the 

target subject or reference at homologous locations. As with RHA and CHA, BrainSync uses an orthogonal transform so 

that each element of the transformed time-series is a linear combination of the entire original time series. Topological or 

temporal contiguity constraints are not included in the transform.  The common use of orthogonality constraints on the 

transforms in RHA, CHA and BrainSync make them all stable and invertible.  

The purpose of this paper is two-fold. First, we describe a group extension of BrainSync, which we refer to as BrainSync 

Alignment (BSA). As described in Joshi et al (2018)10, Brainsync was applied pairwise to bring a group of subjects into 

alignment with a single representative subject. This tends to bias subsequent analysis towards the individual characteristics 

of the representative subject. Here we define a group approach in which orthogonal transforms are applied to each subject 

to match to an unbiased group average, which we also estimate, that can serve as a Joint Synchronized Group Average 

(JSGA) template.  

The second goal of the paper is to explore combinations of spatial and temporal alignment. RHA performs spatial alignment 

of cortical locations using task fMRI but cannot align resting fMRI data due to the lack of temporal synchronization. On 

the other hand, BrainSync or BSA can be used to align spontaneous rfMRI data in time between any pair of subjects or to 

a group average.  We can, therefore, combine them to perform simultaneous temporal and spatial group alignment of rfMRI 

data by first applying BSA than RHA. By applying this procedure to resting data of a large number of normal subjects, we 

can use the resulting group average template as a functional atlas against which we can compare other populations or task 

conditions.  Moreover, we can use the transformation computed using RHA applied to BSA-transformed resting data to 

define a spatial-only transformation to be applied to independent task datasets of the same subjects. The combination of 

BSA and RHA can also be used with task as well as resting fMRI. In this case, even though data are temporally locked to 

a task or stimulus, differences in latency of response can lead to inter-subject variability in timing that can be reduced 
using the BSA transform. Here we explore whether RHA alignment of task data after application of BSA improves spatial 

functional correspondence compared to that obtained using RHA only. As a baseline, we also compared against spatial 

alignment using CHA in all cases. We evaluate performance using multiple rfMRI sessions and matched task fMRI data 

from the Human Connectome Project (HCP). 

2. METHODOLOGY  

We used RHA and CHA for spatial alignment and BSA for temporal alignment (synchronization) of subject data. All three 

methods find orthogonal transforms to align the input data to minimize the Frobenius norm as a distance measure. Although 
they share a similar form in terms of the cost function and are solutions to the general orthogonal Procrustes problem, they 

differ in the way that the information is used for synchronization or alignment as we describe below. 

1.1 Preprocessing 

As input, we assume structural and rfMRI images for each subject. The structural images are preprocessed to generate 

cortical surface representations and coregistered to a common atlas. The rfMRI data are preprocessed using HCPs minimal 

processing pipeline 12 and the time-series normalized to zero mean and unit temporal norm at each vertex. They are then 

mapped to the common cortical surface atlas. This preprocessing results in structurally coregistered  𝑉 × 𝑇 data matrices, 𝑋𝑘  (𝑘 = 1,2, … , 𝑀),  one for each of 𝑀 subjects, each with V vertices in the cortical surface mesh and 𝑇 time points. 

1.2 BrainSync Alignment (BSA) 

After normalization of time-series at each vertex, each time-series can be represented as a point on a hypersphere. Under 
the assumption of similar spatial correlation patterns across subjects,  it was previously shown that between every pair of 

subjects, there exists an orthogonal transform that approximately synchronizes their time series data10. In that work, a 

representative individual subject was chosen as a template for alignment. Here we describe an extension, BrainSync 

Alignment (BSA), that jointly finds a set of 𝑇 × 𝑇 orthogonal transforms 𝑂𝑖 , 𝑖 = 1,2, … , 𝑀, such that the transformed 
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signals are jointly synchronized across subjects. Since the 𝑂𝑖 transforms are invertible, this process preserves the full time-

series and connectivity structure of the original data for all subjects. Each  𝑂𝑖 is chosen such that it minimizes the joint 

cost ∑ ‖𝑋𝑖𝑂𝑖 − 𝐺‖2 𝑀𝑖=1  where 𝐺 = (1/𝑀) ∑ 𝑋𝑖𝑂𝑖𝑖  is the group average computed from each of the aligned data sets. 

Interestingly, the solution to this problem is identical to that of finding the set of orthogonal transforms that minimize the 

sum of distances between each pair of transformed data sets13: 

 arg min𝑂𝑖(𝑖=1,2,…,𝑀)𝑀 ∑ ‖𝑋𝑖𝑂𝑖 − 𝐺‖2 𝑀𝑖=1 = ∑ ∑ ‖𝑋𝑖𝑂𝑖 − 𝑋𝑗𝑂𝑗‖2  𝑖<𝑗𝑀𝑗=1  (1) 

The function can be optimized using a solution to the general orthogonal Procrustes problem14.  For the 𝑀 = 2 case, the 

orthogonal transform  𝑂2 that rotates 𝑋2 toward 𝑋1 (with  𝑂1 = 𝐼) is given by a closed form expression and can be 

calculated using a singular value decomposition (SVD) of the cross-correlation matrix: 𝑂2 = 𝑈𝑉𝑡  where 𝑋2𝑇𝑋1 = 𝑈Σ𝑉𝑡 
15. For solving the generalized form of Eq. (1) for 𝑀 > 2, a closed form solution does not exist and an iterative solution is 

needed to obtain a minimum16. One solution is to use an alternating least-squares algorithm with the following steps: (i) G 

is initialized using a random set of initial orthogonal transforms 𝑂𝑖 ,   𝑖 = 1 ,2 , … , 𝑀; (ii) Holding 𝐺 constant, the left hand 

side of (1) decouples into separate problems for each 𝑖 = 1 ,2 , … , 𝑀. The problem therefore reduces to the 𝑀 = 2 case for 

each 𝑖 and can be computed in closed form; (iii) 𝐺 is then updated with the new 𝑂𝑖 ′s. Steps (ii) and (iii) are repeated until 

some convergence criterion is met. This iterative method is guaranteed to converge to at least a local minimum that depends 
on the initialization.  It has also been proven that a sufficient condition for reaching the global minimum is that the cross 

covariance matrices for all pairs of transformed data are positive semidefinite after transformation13,14,16. 

As an alternative, Berge14 argued that including 𝑋𝑘𝑂𝑘 in G in each step is suboptimal and that the 𝑘-excluded group average 𝐺𝑘 = 1𝑀−1 ∑ 𝑋𝑖𝑂𝑖𝑀𝑖≠𝑘  would be a better alternative that results in convergence in fewer steps. Since 𝑀𝐺 = 𝑋𝑘𝑂𝑘 +(𝑀 − 1)𝐺𝑘,  we obtain the identity: 

 ∑ ‖𝑋𝑘𝑂𝑘 − 𝐺‖2 =  (𝑀−1𝑀 )2 𝑀𝑘=1 ∑ ‖𝑋𝑘𝑂𝑘 − 𝐺𝑘‖𝑀𝑘=1 2
 (2) 

so that using the 𝑘-excluded group average does not alter the solution of the optimization problem.  Minimization of (2) 

can be performed iteratively using the same alternating method as outlined above but excluding the 𝑘𝑡ℎ dataset from each 

average for 𝑘 = 1, … 𝑀.  

In our implementation of BSA, we initialize the 𝑂𝑖′s with a set of random orthogonal transformations and iteratively 

optimize them as above until we meet the convergence criterion that the relative change in the cost function is smaller than 

1e-6. We confirmed that using the 𝑘-excluded mean resulted in faster convergence. We ran this algorithm on multiple data 

sets with multiple random initializations and found that in practice for the rfMRI data the solutions were the same for all 

initializations, possibly indicating a globally optimal solution although the solutions did not satisfy the sufficiency 

condition above.  

We refer to 𝐺 as the Joint Synchronized Group Average (JSGA) template which can be used as a functional atlas 

representing typical resting functional activity across the group. Other subjects or groups can then be compared against 

this atlas (by also synchronizing them to 𝐺)  as a means of identifying individual or group differences in spontaneous 

functional activity.  

To visualize how well the JSGA represents the group of subjects from which it is computed, we used pairwise distances 

between subjects and the group average (the JSGA template) to perform a 2D multidimensional scaling (MDS) embedding 

and compare the position of the JSGA template to that of the best-fitting single subject template as described in Joshi et al 

(2018)10. 

1.3 Response and Connectivity HyperAlignment (RHA, CHA) 

In contrast to BSA which works on resting data, RHA assumes task data as input where timing is implicitly synchronized 

to a stimulus such as movie watching. The goal of RHA9 is to represent time series at each point on the cortex as a linear 

combination of other time series with a nominal 20 mm neighborhood such that the transformed data across subjects 

becomes similar within this region. Similarly to BSA, RHA also finds an orthogonal transform but in the spatial rather 

than temporal domain by minimizing the cost: ∑ ‖𝑋𝑖𝑇𝑄𝑖 − 𝐻‖2 𝑀𝑖=1  where 𝐻 = (1/𝑀) ∑ 𝑋𝑖𝑇𝑄𝑖𝑖 . To solve this optimization 

problem, RHA uses the following procedure: (i) one subject is aligned to an arbitrarily chosen reference subject; each 

additional subject is then transformed to the mean of all previously transformed subjects; (ii) each subject is then aligned 
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to the  𝑘-excluded mean from the previous pass; (iii) all subjects are realigned to the average from the second pass. Iterative 

repetition of step (iii) is equivalent to the algorithm for BHA outlined above but with a different initialization.  

CHA applies a similar procedure as RHA but using connectivity profiles rather than the fMRI data itself. The connectivity 

profile is formed as the correlation from one vertex to all other vertices and used as the feature vector for that vertex from 
which the orthogonal transform is computed. The transform performs a Procrustes fit to maximize similarity in the spatial 

connectivity profiles across a group of subjects using a variant of the algorithm outlined for RHA. The orthogonal 

transforms in RHA and CHA both perform local spatial fits across subjects so that modifications are required to perform 

whole brain alignment as described by Haxby et al (2016)9  and Guntupalli et al (2018)11.  

1.4 Combination of BSA, CHA, RHA: 

The limitation of RHA is that it needs stimulus locked input data and therefore cannot be used on spontaneous resting 

fMRI data. Since BSA can be used to align spontaneous rfMRI data to a group average, we can combine it with RHA to 

perform simultaneous temporal and spatial group alignment of rfMRI data by first applying BSA then RHA (jointly 

referred to below as BRHA). We note that BRHA can be applied to task fMRI as well as rfMRI. In the former case, this 

may have the advantage over RHA alone of aligning components in the brains response to a task that may vary in latency 

across subjects.  

We computed spatial alignment transforms from the first session of resting data using both CHA11 and the combination of 
BSA10 and RHA8 (or BRHA). We then applied these transforms to the second independent session after first temporally 

aligning the second session using BSA. We then calculated the correlation between each subject from the second session 

and the group average atlas. To further explore the impact of CHA and BRHA, we applied the spatial orthogonal transforms 

obtained from resting fMRI to z-score maps for the HCP task fMRI data for the same set of subjects and compared results 

using the inter-subject correlation (ISC). ISC was computed as the mean over all subjects of the correlation between each 

subject’s z-score maps and the k-excluded mean of the other subjects. Larger ISCs should be indicative of improved 

functional correspondence across subjects in the task-related response as a result of CHA or BRHA’s spatial alignment.  

The different spatial alignment methods (RHA, CHA, BRHA) were also applied directly to task fMRI data. We used two 

sessions of several of the task data sets from the HCP database17. Orthogonal transforms were computed from the first 

session and applied to the second session of task data in each case. ISCs of the task times series were used for comparing 

results.  

3. DATA 

For spatio-temporal alignment of rfMRI, we used two 15-minute sessions of minimally preprocessed rfMRI data (TR = 

720 ms, TE = 33.1 ms, 2 mm ×2 mm×2 mm voxels) from 40 subjects in the Human Connectome Project (HCP) database12 

(all right-handed, age 26-30) in which the subjects were asked to relax and fixate on a projected bright cross-hair on a dark 

background. Data were resampled on the midcortical surface and coregistered to a standard cortical atlas. The data were 

then further down-sampled to an 11,000-vertex tessellation for computational tractability. CHA and BRHA transforms 

were calculated from the first session resting data and applied to the second after BSA transformation calculated 
independently for the second session.  Z-score maps for the emotion (faces-shapes), gambling (punish-reward), language 

(math-story), motor (tongue-average), relational (matching-relational) and social (theory of mind) tasks in the HCP 

dataset17 (TR = 720 ms, TE = 33.1 ms, 2 mm ×2 mm×2 mm voxels) for the same subjects were used for validation.  

For spatio-temporal alignment of task fMRI data, we used two sessions of the motor (hand, foot, tongue movements), 

emotion (valance judgments (faces), shape recognition), and language (sentences, stories, mental arithmetic (auditory)) 

task data from the same 40 subjects as the rfMRI study17. Similar to the rfMRI processing, the minimally preprocessed 

task fMRI data was down-sampled to ~11k resolution. CHA, RHA and BRHA transforms obtained from the first session 

were then applied to the second session.  

4. RESULTS 

As shown in Figure 1(A), the JSGA template lies close to the center of the group in the MDS embedding, indicating that 

it is representative of the group. In comparison, the single subject template (#135932) lies off-center indicating a larger 

distance to some of the subjects in this group.   
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Figure 1(B) shows the mean correlation between time-series at homologous locations computed from the second session 

between each subject and the corresponding group average template. While BSA computed for the second session alone 

produces relatively high correlations after synchronization, these correlations are improved substantially when we also 

apply spatial alignment based on CHA or BRHA as computed from the first session.  Furthermore, visual inspection 

indicates that BRHA leads to larger correlations than CHA.  

Table 1 shows ISCs between z-score maps for the task data before and after spatial alignment using both CHA and BRHA 

computed from the first rfMRI session. Both CHA and BRHA produce significant improvements in ISCs relative to the 

original (non-aligned) data, indicating that spatial alignment based on resting data can lead to improved inter-subject 

alignment of independent task data. Interestingly, while the correlation plots in Figure 1(B) show improved correlation 

with BRHA relative to CHA, we found that while the differences are small, CHA performs significantly better than BRHA 

for language (p<0.0016) and gambling (p<0.0016) tasks using the Wilcoxon ranksum test Bonferroni-corrected for the six 

different tests in Table 1. Given the apparent discrepancy between Figure 1(B) and Table 1, further comparative studies of 

CHA and BRHA are needed to better understand their relative performance.  

Results for spatio-temporal alignment using task fMRI data are summarized in Table 2 and illustrated in Figure 2 for three 

different tasks. Figure 2 shows increased ISCs using all three spatial alignment methods relative to the original data. BRHA 

significantly outperforms both RHA (p<0.0025) and CHA (p<0.0025) using the Wilcoxon ranksum test Bonferroni-

corrected for the four different tests in Table 2. This result indicates the potential for the combination of BSA and RHA to 

provide overall improvements in alignment relative to either RHA or CHA alone when using task data. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. (A) MDS embedding of the 40 subjects and JSGA template based on the rfMRI data. The best representative 
individual template and the JSGA template are marked. (B) Mean correlation between subjects and group average templates 
for the second session data. 

Table 1. Median and interquartile (in parenthesis) Inter Subject Correlations (ISCs) between response profiles of z-score 
maps before and after applying spatial transformations learned from resting fMRI. 

Task Contrast Original BRHA CHA 

Emotion faces_shapes 0.5279(0.1227) 0.6025 (0.1222) 0.5954(0.1303) 

Gambling punish_reward 0.1337(0.0872) 0.1833(0.1727) 0.2161(0.2061) 

Language Math_story 0.6527(0.0850) 0.7428(0.0849) 0.7587(0.0852) 

Motor t_avg 0.4778(0.0913) 0.5275(0.1091) 0.5306(0.1130) 

Relational match_rel 0.3679(0.1833) 0.4542(0.2122) 0.4268(0.2450) 

Social random_tom 0.4626(0.1219) 0.5275(0.1357) 0.5236(0.1397) 

 

A B 
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5. CONCLUSION 

The contribution of this work is twofold. First, we describe BSA, an extension of BrainSync that performs joint 

synchronization of rfMRI time-series across a group of subjects using a set of orthogonal transforms. This joint 

synchronization yields a group average template that can be used as a standard reference. Individual subjects can be 

compared to this reference to identify brain regions that do not synchronize well. This may be the case, for example, in 

epileptogenic regions in subjects with focal epilepsy.  

The second contribution is the combination of BSA with RHA and CHA to perform simultaneous temporal and spatial 

synchronization of rfMRI data. We have shown that this combination increases the average correlation between individuals 

and the group average atlas relative to BSA alone, indicating the synergistic capabilities of combining spatial and temporal 

alignment. Using BRHA we were able to achieve similar performance to CHA when using the resulting transforms to align 

task fMRI data. We also investigated the application of BRHA and CHA directly to task data. Our results show that BRHA 

gives superior performance relative to either RHA or CHA alone, in terms of intersubject correlation after applying the 

computed transforms to matched independent task data from the same subjects. This approach may help reduce intrasubject 

differences across scans and improve power in group studies. 

 

Figure 2. Mean of ISCs between response profiles for task data sets. Transforms were learned from the first task session and 
applied to the second.  
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Table 2. Median and interquartile (in parenthesis) of ISCs between response profiles of task fMRI datasets after applying 
spatial transformations learned from the first task session and applied to the second (MC: computed over Motor Cortex only, 
WC: computed over Whole Cortex). 

Task Original RHA CHA BRHA 

Motor(MC) 
0.1739 
(0.0323) 

0.2110 
(0.0690) 

0.2107 
(0.0531) 

0.2394 
(0.0584) 

Motor(WC) 
0.1009 

(0.0328) 

0.0936 

(0.0377) 

0.1369 

(0.0437) 

0.1502 

(0.05) 

Language(WC) 
0.0800 
(0.0273) 

0.1037 
(0.0355) 

0.1333 
(0.0465) 

0.1464 
(0.0470) 

EMOTION(WC) 
0.0657 

(0.0238) 

0.0601 

(0.0239) 

0.0966 

(0.0325) 

0.1089 

(0.0372) 
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