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ABSTRACT

Automated brain lesion detection from multi-spectral MR im-

ages can assist clinicians by improving sensitivity as well as

specificity. Supervised machine learning methods have been

successful in lesion detection. However, these methods usu-

ally rely on a large number of manually delineated images for

specific imaging protocols and parameters and often do not

generalize well to other imaging parameters and demograph-

ics. Most recently, unsupervised models such as autoencoders

have become attractive for lesion detection since they do not

need access to manually delineated lesions. Despite the suc-

cess of unsupervised models, using pre-trained models on an

unseen dataset is still a challenge. This difficulty is because

the new dataset may use different imaging parameters, demo-

graphics, and different pre-processing techniques. Addition-

ally, using a clinical dataset that has anomalies and outliers

can make unsupervised learning challenging since the out-

liers can unduly affect the performance of the learned mod-

els. These two difficulties make unsupervised lesion detec-

tion a particularly challenging task. The method proposed

in this work addresses these issues using a two-prong strat-

egy: (1) we use a robust variational autoencoder model that

is based on robust statistics, specifically the β-divergence that

can be trained with data that has outliers; (2) we use a transfer-

learning method for learning models across datasets with dif-

ferent characteristics. Our results on MRI datasets demon-

strate that we can improve the accuracy of lesion detection by

adapting robust statistical models and transfer learning for a

variational autoencoder model.

Index Terms— variational autoencoders, lesion detec-

tion, robust variational autoencoders, brain imaging, unsuper-

vised machine learning, anomaly detection

1. INTRODUCTION

Accurate detection of lesions in the human brain is crucial

for early diagnosis and treatment. Medical imaging tech-

niques, such as MRI are now standard clinical tools for de-

tecting and quantifying lesions. Humans excel in identifying
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lesions by visual inspection after extensive training, but the

subjective and expensive nature of human detection and de-

lineation makes the machine learning methods an attractive

alternative or complement. Furthermore, machine learning

might be able to achieve better-than-human performance for

this specific task by leveraging multispectral MRI. Research

based on supervised machine learning has already achieved

significant success [1, 2, 3] with human-level or better per-

formance. However, large numbers of manual lesion delin-

eations are required for training supervised methods. Unsu-

pervised approaches, on the other hand, do not require labeled

data but generally are less accurate.

Unsupervised approaches such as the autoencoder and

variational autoencoder (VAE) [4] and their variants [5] have

shown that we can approximate the underlying distributions

of high-dimensional data. A common application of unsuper-

vised approaches is outlier detection [6], where the goal is to

identify data samples whose representation deviates from the

normal samples. For a population of brain images, assuming

that lesions and other abnormalities occur rarely and in differ-

ent locations across subjects, we conjecture that it is possible

to learn the distribution that reflects a healthy brain structure

using a VAE. Once this distribution is learned, we can mea-

sure the reconstruction error between a given image and the

reconstructed image to identify and localize abnormalities in

that image.

A VAE is a probabilistic autoencoder that uses the vari-

ational lower bound of the marginal likelihood of data as

the objective function. It has been shown that VAEs achieve

higher accuracy in lesion detection tasks than standard au-

toencoder [7, 8, 9]. VAEs are based on the assumption that

the training dataset and the test dataset are sampled from

the same distribution. However, this assumption may not

hold in real-world settings such as medical imaging appli-

cations since different datasets can use different acquisition

and pre-processing techniques. Ideally, we should still be

able to leverage a pre-trained VAE model to develop a new

model that adapts to our dataset. The topic of transfer learn-

ing focuses on addressing this problem [10]. With the aid of

transfer learning, it is possible to store the knowledge gained

while solving one problem and apply it to a different problem.

The VAE’s objective function contains the KL-divergence
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term which does not cope well with outliers and is therefore

not robust. This may lead to unintended effects in applying

transfer learning for adapting pre-trained VAE models when

the characteristics of the new dataset differ significantly from

that of the initial training dataset. To this end, we propose

the use of robust VAE based on the notion of β-divergence

from robust statistics [11] for applying transfer learning from

pre-trained unsupervised lesion detection models. By vary-

ing the robustness hyperparameter β, we can control how

much influence is granted to samples with low probability.

We demonstrate the effectiveness of our approach on brain

MRI datasets. Our results show that the combination of ro-

bust VAE and transfer learning allows us to use training data

that has different imaging parameters and demographics than

that of the test dataset. We demonstrate this using a quantita-

tive comparison to VAE models.

2. MATHEMATICAL FORMULATION

In this section, we first present a summary of VAEs and robust

variational inference. Then we formulate a robust VAE that

can be trained on a mixture of normal and lesion images based

on the assumption that the lesion-free images are drawn from

a Gaussian distribution.

2.1. Variational Autoencoder

The VAE is a directed probabilistic graphical model whose

posteriors are approximated by a neural network. Let ~X de-

note the input data, ~x(i) denote the samples of ~X , and ~Z

denote its low-dimensional latent representation. The VAE

consists of an encoder network that computes an approxi-

mate posterior qφ(~Z| ~X), and a decoder network that com-

putes pθ( ~X|~Z) [4] and pθ(~Z) denotes the prior distribution

which z is generated from. The model parameters φ and θ

are found by maximizing the evidence lower bound (ELBO)

function [4]:

L(θ, φ; ~x(i)) =E
qφ(~Z|~x(i))[log(pθ(~x

(i)|~Z))]

−DKL(qφ(~Z|~x(i))||pθ(~Z)).
(1)

The first term (log-likelihood) can be interpreted as the recon-

struction loss and the second term (KL divergence) as the reg-

ularizer. Using empirical estimates of expectation, we form

the Stochastic Gradient Variational Bayes cost [4]:

L(θ, φ; ~x(i)) ≈
1

S

S∑
j=1

log(pθ(~x
(i)|~z(j)))

−DKL(qφ(~Z|~x(i))||pθ(~Z)),

(2)

where S is the number of samples drawn from qφ(~Z| ~X). In

practice, we can choose S = 1 as long as the minibatch size

is large enough.

Assuming pθ( ~X|~Z) is a Gaussian distribution and the out-

put of the network is the mean of this distribution, the log-

likelihood term simplifies to the mean-squared-error.

2.2. Robust Variational Autoencoder

Robust variational inference is based on the β−ELBO based

loss function and replaces the log-likelihood term with β-

divergence which is equivalent to minimizing β-cross entropy

[11, 12]. The β − ELBO function is given by:

Lβ(q, θ) =−NE
qφ(~Z|~x(i))[(Hβ(p̂( ~X)||pθ( ~X|~Z)))]

−DKL(q(~Z)||pθ(~Z)).
(3)

where pθ(~Z| ~X) is posterior distribution, the empirical distri-

bution is p̂( ~X) = 1
N

∑N
i=1 δ(

~X,x(i)) where δ is the Dirac

delta function and ~Z represents the latent variable, N is the

number of samples, and θ contains the generative model’s pa-

rameters. The β-cross entropy is given by [12]:

Hβ(p̂( ~X)||pθ( ~X|~Z)) =

−
β + 1

β

∫
p̂( ~X)(pθ( ~X|~Z)β − 1)d ~X +

∫
pθ( ~X|~Z)β+1d ~X.

(4)

By replacing log-likelihood with β-cross entropy in the
VAE formulation, we obtain a new cost function which is
robust to outliers [13]. For a Gaussian distribution, the
β−ELBO-cost of RVAE for the jth sample simplifies to
[13]:

Lβ(θ, φ; ~x
(i)) =

β + 1

β

(

1

(2πσ2)βD/2
exp

(

−
β

2σ2

D
∑

d=1

||~̂x
(j)
d − ~x

(i)
d ||2

)

− 1

)

−DKL(qφ(~Z|~x(i))||pθ(~Z)).

(5)

Similar to the VAE, we use stochastic gradient variational

bayes cost minimization using sampling to optimize β-ELBO

to train the robust VAE.

Next, we describe the use of VAE and robust VAE in com-

bination with transfer learning for lesion delineation tasks.

3. THE MODEL AND EXPERIMENTS

We used the VAE architecture proposed in [14] that consists

of three consecutive blocks of convolutional layer, a batch

normalization layer, a rectified linear unit (ReLU) activation

function and two fully-connected layers in the bottleneck for

the encoder and a fully-connected layer and three consecutive

blocks of deconvolutional layers, a batch normalization layer

and ReLU, and a final deconvolutional layers for the decoder.

The size of the input layer is 3× 64× 64.
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Fig. 1. VAE network and input, output sample for ISLES

dataset

3.1. Data and Preprocessing

For the initial training, we used 20 central axial slices of

brain MRI datasets from a combination of 119 subjects from

the Maryland MagNeTS study [15] of neurotrauma and 112

subjects of TrackTBI-Pilot [16] dataset, both available for

download from https://fitbir.nih.gov. We used

2D slices rather than 3D images to make sure we had a large

enough dataset for training the VAE. These datasets contain

T1, T2 and FLAIR images for each subject, and have sparse

lesions. The three imaging modalities (T1, T2, FLAIR) were

rigidly coregistered within subject and to the MNI atlas ref-

erence, and re-sampled to 1mm isotropic resolution. Skull

and other non-brain tissue were removed using BrainSuite

(https://brainsuite.org). Subsequently, we re-

shaped each sample into 64 × 64 dimensional images and

performed histogram equalization to a lesion free subject that

intensity-normalized by the value of the 99th percentile voxel.

We used 191 subjects for training and 40 subjects for valida-

tion randomly sampled from MagNeTS and TrackTBI-Pilot

datasets.

Experiments for pre-trained model: In this experiment,

we evaluate the performance of a pre-trained model on a

dataset that was pre-processed similarly to the training set.

We used 20 central axial slices of 15 subjects from the ISLES

(The Ischemic Stroke Lesion Segmentation) database [17]

as a test set and performed similar pre-processing as for the

training set.

Experiments for re-training models (VAEbr, RVAEbr):

In this experiment, we re-train VAE and RVAE models from

scratch using a combination of the initial dataset and an ad-

ditional 20 independent subjects from the BRATS dataset

(https://www.smir.ch/BRATS/Start2015). We

used 20 central axial slices from the rest of the 20 subjects of

BRATS 2015 as test data.

Experiments for transfer learning (PreVAE, Pre-

RVAE): In this final experiment, we assume that we only

have access to the pre-trained models but the training datasets

used for pre-trained models are not available. We updated the

pre-trained models using 20 subjects from the BRATS 2015

dataset. Similar to the experiments for re-training the models,

we tested the updated models on 20 central axial slices from

20 subjects of the BRATS 2015 dataset.

3.2. Results

The absolute error maps between reconstructed and original

images were computed for segmentation of the lesions. A me-

dian filter of size 7x7 was applied to remove isolated pixels.

The filtered lesion error maps were used to plot ROC (Re-

ceiver Operating Characteristic) curves from which we com-

puted the AUC (Area Under The Curve) Hand-traced lesions

were used to define ground truth. Only the pixels inside the

brain mask were used for AUC computation. A example in-

put image from the ISLES test dataset and its reconstruction

using the pre-trained VAE model is shown in Figure 1. The

AUC for this experiment was 0.93.

Experimental results of re-training the models and using

transfer learning are illustrated in Figure 2 with the ROC

curves and AUC values shown in Figure 3. Figure 2A shows

that RVAE did not reconstruct the lesions while the lesions

are more apparent in the reconstructed images from the VAE

model. As a result, it can be concluded that the RVAE can

capture the locations of the lesions more accurately by com-

puting the error between original and reconstructed images.

The AUC of the pre-trained VAE was 0.75. When the VAE

is re-trained from scratch using the BRATS dataset (VAEbr),

the AUC has increased to 0.9. However, the value of AUC

decreased to 0.82 when transfer learning is applied to the

pre-trained VAE model (PreVAE).

The AUC of the RVAE model that was re-trained using

the initial and the BRATS datasets (RVAEbr) was 0.92. The

AUC increased to 0.93 when transfer learning was applied to

the RVAE model (PreVAE).

The values of beta for these experiments were chosen us-

ing the validation dataset. We chose a beta value that prevents

RVAE from reconstructing lesions in validation dataset.

4. DISCUSSION AND CONCLUSION

After training the VAE using nominally normal (anomaly

free) data, we can use it for anomaly detection and specifically

for identification of abnormal structures in medical images.

We focused on delineating lesions from MRI scans which

might have differing characteristics and pre-processing. This

causes degradation in the performance of VAE. Utilizing the

robustness of RVAE, we described a framework that enables

us to fine-tune the model for new test sets with differing spe-

cific attributes. We used a pre-trained model and re-trained it

with the additional subjects from the new dataset for model

refinement. The robustness of RVAE forces the model to only

learn common features between these data samples instead

of their anomalous features (lesions). We have shown quan-

titatively and qualitatively that RVAE outperforms VAE both

before and after model refinement. A previous study on the

BRATS 2015 dataset [7] reported AUC of 0.9 using VAE.
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Original VAE VAEbr RVAEbr PreVAE PreRVAE VAE VAEbr RVAEbr PreVAE PreRVAE GTruth

Fig. 2. (A) Original and reconstructed test images using different models. (B) Absolute reconstruction error of the test images

and associated hand-delineated lesions (GTruth). VAEbr: VAE model re-trained from scratch using the initial data and the

BRATS samples, RVAEbr: RVAE model re-trained from scratch using the initial data and BRATS samples, PreVAE: transfer

learning of VAE from the pre-trained VAE model using additional BRATS samples, PreRVAE: transfer learning of RVAE from

the pre-trained VAE model using additional BRATS samples.
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Fig. 3. ROC curves of different models. RVAE outperforms

VAE both when trained from scratch using BRATS samples in

addition to the initial data (RVAEbr vs VAEbr) and when up-

dated using the pre-trained models (PreRVAE vs PreRVAE).

We achieved a similar level of performance by using only a

subset of this dataset and a pre-trained model from a different

dataset.

5. REFERENCES

[1] Hongwei Li, Gongfa Jiang, Jianguo Zhang, Ruixuan

Wang, Zhaolei Wang, Wei-Shi Zheng, and Bjoern

Menze, “Fully convolutional network ensembles for

white matter hyperintensities segmentation in mr im-

ages,” NeuroImage, vol. 183, pp. 650–665, 2018.

[2] Konstantinos Kamnitsas, Christian Ledig, Virginia FJ

Newcombe, Joanna P Simpson, Andrew D Kane,

David K Menon, Daniel Rueckert, and Ben Glocker,

“Efficient multi-scale 3d cnn with fully connected crf

for accurate brain lesion segmentation,” Medical image

analysis, vol. 36, pp. 61–78, 2017.

[3] Sérgio Pereira, Adriano Pinto, Victor Alves, and Car-

los A Silva, “Brain tumor segmentation using convo-

lutional neural networks in mri images,” IEEE transac-

tions on medical imaging, vol. 35, no. 5, pp. 1240–1251,

2016.

[4] Diederik P Kingma and Max Welling, “Auto-encoding

variational Bayes,” arXiv preprint arXiv:1312.6114,

2013.

[5] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian

Goodfellow, and Brendan Frey, “Adversarial autoen-

coders,” arXiv preprint arXiv:1511.05644, 2015.

[6] Charu C Aggarwal, “Outlier analysis,” in Data mining.

Springer, 2015, pp. 237–263.

[7] Xiaoran Chen and Ender Konukoglu, “Unsupervised de-

tection of lesions in brain MRI using constrained adver-

sarial auto-encoders,” arXiv preprint arXiv:1806.04972,

2018.

[8] Christoph Baur, Benedikt Wiestler, Shadi Albarqouni,

and Nassir Navab, “Deep autoencoding models for

unsupervised anomaly segmentation in brain mr im-

ages,” in International MICCAI Brainlesion Workshop.

Springer, 2018, pp. 161–169.

Authors' a
ccepted version

For re
search purpose only

Copyrig
ht (c

) IE
EE

Full a
rtic

le and cita
tio

n at

http
s://d

oi.o
rg/10.1109/IS

BI45749.2020.9098405



[9] Nick Pawlowski, Matthew CH Lee, Martin Rajchl,

Steven McDonagh, Enzo Ferrante, Konstantinos Kam-

nitsas, Sam Cooke, Susan Stevenson, Aneesh Khetani,

Tom Newman, et al., “Unsupervised lesion detection

in brain ct using bayesian convolutional autoencoders,”

OpenReview, 2018.

[10] Sinno Jialin Pan and Qiang Yang, “A survey on transfer

learning,” IEEE Transactions on Knowledge and Data

Engineering, vol. 22, pp. 1345–1359, 2010.

[11] Futoshi Futami, Issei Sato, and Masashi Sugiyama,

“Variational inference based on robust divergences,”

arXiv preprint arXiv:1710.06595, 2017.

[12] Andrzej Cichocki and Shun-ichi Amari, “Families of

alpha-beta-and gamma-divergences: Flexible and robust

measures of similarities,” Entropy, vol. 12, no. 6, pp.

1532–1568, 2010.

[13] Haleh Akrami, Anand A Joshi, Jian Li, and Richard M

Leahy, “Robust variational autoencoder,” arXiv preprint

arXiv:1905.09961, 2019.

[14] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby,

Hugo Larochelle, and Ole Winther, “Autoencoding be-

yond pixels using a learned similarity metric,” arXiv

preprint arXiv:1512.09300, 2015.

[15] Rao P Gullapalli, “Investigation of prognostic ability of

novel imaging markers for traumatic brain injury (tbi),”

Tech. Rep., BALTIMORE UNIV MD, 2011.

[16] John K Yue, Mary J Vassar, Hester F Lingsma, Shelly R

Cooper, David O Okonkwo, Alex B Valadka, Wayne A

Gordon, Andrew IR Maas, Pratik Mukherjee, Esther L

Yuh, et al., “Transforming research and clinical knowl-

edge in traumatic brain injury pilot: multicenter imple-

mentation of the common data elements for traumatic

brain injury,” Journal of neurotrauma, vol. 30, no. 22,

pp. 1831–1844, 2013.

[17] Oskar Maier, Bjoern H Menze, Janina von der Gablentz,

Levin Häni, Mattias P Heinrich, Matthias Liebrand, Ste-

fan Winzeck, Abdul Basit, Paul Bentley, Liang Chen,

et al., “ISLES 2015-a public evaluation benchmark for

ischemic stroke lesion segmentation from multispectral

MRI,” Medical image analysis, vol. 35, pp. 250–269,

2017.
Authors' a

ccepted version

For re
search purpose only

Copyrig
ht (c

) IE
EE

Full a
rtic

le and cita
tio

n at

http
s://d

oi.o
rg/10.1109/IS

BI45749.2020.9098405


