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Reduced subgenual 
cingulate–dorsolateral 
prefrontal connectivity 
as an electrophysiological marker 
for depression
Lars Benschop1*, Gert Vanhollebeke1, Jian Li2,3, Richard M. Leahy4, 
Marie‑Anne Vanderhasselt1,5,8 & Chris Baeken1,6,7,8

Major Depressive Disorder (MDD) is a widespread mental illness that causes considerable suffering, 
and neuroimaging studies are trying to reduce this burden by developing biomarkers that can 
facilitate detection. Prior fMRI‑ and neurostimulation studies suggest that aberrant subgenual 
Anterior Cingulate (sgACC)—dorsolateral Prefrontal Cortex (DLPFC) functional connectivity is 
consistently present within MDD. Combining the need for reliable depression markers with the 
electroencephalogram’s (EEG) high clinical utility, we investigated whether aberrant EEG sgACC–
DLPFC functional connectivity could serve as a marker for depression. Source‑space Amplitude 
Envelope Correlations (AEC) of 20 MDD patients and 20 matched controls were contrasted using 
non‑parametric permutation tests. In addition, extracted AEC values were used to (a) correlate with 
characteristics of depression and (b) train a Support Vector Machine (SVM) to determine sgACC–DLPFC 
connectivity’s discriminative power. FDR‑thresholded statistical maps showed reduced sgACC–DLPFC 
AEC connectivity in MDD patients relative to controls. This diminished AEC connectivity is located in 
the beta‑1 (13–17 Hz) band and is associated with patients’ lifetime number of depressive episodes. 
Using extracted sgACC–DLPFC AEC values, the SVM achieved a classification accuracy of 84.6% (80% 
sensitivity and 89.5% specificity) indicating that EEG sgACC–DLPFC connectivity has promise as a 
biomarker for MDD.

Major Depressive Disorder (MDD) is a severe, widespread and often recurring psychiatric illness that is primarily 
characterized by a loss of experiencing pleasure, persistent sad mood, sleep disturbances, changes in appetite 
and impaired  concentration1. The lifetime prevalence of MDD is estimated around 20% and 30% for men and 
women  respectively2. In addition, the societal and economic burden of MDD is considerable due to an increase 
in absenteeism, alcohol- and drug related issues, suicide attempts and general illness comorbidity, making MDD 
a leading cause of  disability3. It is therefore imperative to focus research efforts on the development of reliable 
and practical biomarkers of MDD that can be applied in clinical settings.

In the past decade, research investigating neural correlates of MDD has shifted focus from identifying specific 
dysfunctional brain regions to examining intrinsic neural networks implicated in  depression4. One of these net-
works is the cognitive control network (CCN) which comprises the dorsolateral prefrontal cortex (DLPFC), the 
anterior cingulate cortex (ACC) and the parietal  cortex5–7. The CCN’s main function is to regulate cognition and 
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behavior in the pursuit of internal goals by way of directing attention towards task relevant stimuli while simul-
taneously inhibiting task irrelevant  stimuli8,9. In patients with depression the CCN’s connectivity is diminished, 
resulting in difficulties with both sustained attention and the downregulating of negative  emotions1,10,11. There 
is mounting evidence showing the involvement of the CCN in regulating both positive and negative emotions 
through indirect top-down connections with limbic regions in which the subgenual ACC (sgACC) serves as a 
gatekeeper between the cognitive- and emotional  network12–17. In short, the sgACC has dense connections with 
the amygdala and other regions of the limbic  system18–20, constituting a brain network involved in emotional 
 processing4,21,22. Moreover, the sgACC seems to project information from this affective network to the CCN’s 
frontal cortical  regions1,12,13, resulting in top-down emotion regulation.

Abnormalities in the DLPFC and sgACC have been consistently found in MDD patients. Specifi-
cally, the sgACC seems hyperactive in depression and successful treatment leads to a normalization of this 
 hyperactivity23–25. In contrast, the DLPFC has been found to be hypoactive in MDD  patients26–29 and restoring 
DLPFC activity seems to elicit an antidepressant  response29,30. As a result, both the left- and right DLPFC have 
become popular targets for noninvasive neurostimulation techniques such as Transcranial Magnetic Stimula-
tion (TMS) in the treatment of severe  depression31–36. Fox et al. posit that the left DLPFC and the sgACC are 
intrinsically anticorrelated during rest and that this anticorrelation is exacerbated in  MDD24. Consistent with 
this notion, a neurostimulation study from Baeken and colleagues found stronger sgACC–DLPFC anticorrela-
tions in responders before high frequency TMS treatment while observing a normalization in sgACC–DLPFC 
connectivity after  remission23. Interestingly, applying low frequency TMS to the right DLPFC also seems to 
normalize sgACC  hyperactivity34 and a meta-analysis that compared the clinical efficacy of both treatments 
found them equally  effective31. Consistent with these neurostimulation findings, functional Magnetic Resonance 
Imaging (fMRI) studies reported reduced functional connectivity between the DLPFC and the dorsal ACC in 
late-life depression patients during an executive-control  task37 and when at  rest38. Taken together, aberrant 
sgACC–DLPFC connectivity seems to be a robust component of MDD, making it a promising candidate as a 
biomarker for depression.

A reliable biomarker should be an objective measurement of the physiologic or pathologic processes underly-
ing a biological trait or  illness39. Moreover, a biomarker that is being applied in diagnostics or treatment outcome 
should be relatively accessible for it to have any clinical relevance. Indeed, a biomarker has little clinical value if 
the operational costs are too high or the equipment necessary for measuring it is too scarce. For example, even 
though MDD biomarkers that are based on fMRI studies produce valuable information regarding the neuro-
biological underpinnings of the disease, they are seldom used in clinical practice. Since acquiring and operat-
ing MRI’s is expensive, hospitals will simply prioritize more urgent clinical matters than an MDD diagnosis. 
In contrast, the electroencephalogram (EEG) is a relatively affordable, time-efficient, and commonly available 
neuroimaging tool that is already routinely used in psychiatric and neurologic departments during a patient’s 
hospital  admission40. Furthermore, EEG’s temporal resolution is superior when compared to most other neuro-
imaging techniques. For example, fMRI’s Blood Oxygenation level-dependent (BOLD) functional connectivity 
is based on the relatively slow hemodynamic response, restricting its temporal resolution to around 1 Hz. EEG 
can measure the brains electrical activity with a precision of milliseconds, resulting in a temporal resolution 
of more than 1000 Hz depending on the sampling rate capabilities of the amplifier. This allows researchers to 
estimate the functional connectivity of neural oscillations in real time over an extensive frequency range which 
can reveal unique electrophysiologic frequency signatures of neural processes.

One notable disadvantage of EEG is the low spatial precision which arises from the diffusion of the electri-
cal signals caused by volume conduction of the  skull41. In brief, electrical sources in the brain are projected on 
the scalp which are then measured by the EEG’s electrodes. However, volume conduction and the mixing of 
electrical signals introduces spatial artifacts, distorting scalp projections. For instance, a relatively small source 
localized in the occipital cortex could present as a large frontal  projection42. These spatial artifacts are especially 
problematic when estimating functional connectivity since, diffused electrical signals measured by different 
electrodes could originate from the same neural source which would result in spurious connectivity  values43. 
Fortunately, great strides have been made to minimize spatial artifacts stemming from volume conduction. 
Advancements in source estimation techniques such as the development of realistic head  models44,45, high-density 
EEG (whole-head electrode coverage)46 and more reliable linear inverse  solutions47 substantially improve the 
spatial accuracy of electrophysiological source  models48. Consequently, numerous methods to estimate EEG 
resting state functional connectivity have been  developed49. A study from Colclough and colleagues reports that 
out of 12 electromagnetic connectivity measures, amplitude envelope correlation (AEC) and partial correlation 
measures have the best intra-subject and between group  consistency50; while another study found AEC to best 
mirror connectivity results obtained using  fMRI51, making AEC an excellent measure of connectivity that can 
be compared across modalities.

While some EEG studies have looked at general spectral signatures of aberrant network functional connec-
tivity in  depression52,53, none have investigated whether disturbances in resting state sgACC–DLPFC functional 
connectivity could be utilized as a potential biomarker for MDD. Therefore, the aim of the current EEG study 
was twofold. Firstly, to replicate fMRI and neurostimulation studies that observed disturbances in connectivity 
between the DLPFC and the sgACC in depression and secondly, to evaluate whether this EEG sgACC–DLPFC 
functional connectivity has any reliable biomarker capabilities. The latter goal was attempted by training a sup-
port vector machine (SVM) on the estimated sgACC–DLPFC connectivity values and subsequently test the SVM 
performance to reliably distinguish individual MDD patients from healthy controls based on these connectivity 
values. Compared to other machine learning methods, SVM has some unique properties that are advantageous 
in the context of identifying psychiatric biomarkers such as the ability to analyze high-dimensional datasets with 
small sample  sizes54. We chose to include a supervised machine learning approach, since accurately identifying 
MDD patients should be an essential attribute of any clinically relevant biomarker of depression.
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Methods
Participants. The study sample is comprised of 40 participants including 20 MDD patients (13 females; 
mean age: 36.6, sd: 13.1) and 20 healthy controls (15 females; mean age: 41.25, sd: 14.64). The sample was origi-
nally collected for an ERP study performed by Vanderhasselt and colleagues in which they examined inhibitory 
control performance during MDD  episodes55. Although the current study uses the EEG resting state of the 
same participants, it has no further relation with the ERP study beyond the concurrent collection of the data. 
The MDD patients were recruited from a psychiatric care facility where they were screened by a licensed psy-
chiatrist using the Mini-International Neuropsychiatric Interview (MINI)56 and a structured clinical interview. 
Furthermore, all of the patients met the DSM-IV-TR diagnostic criteria of unipolar major depression and MDD 
severity was assessed with both the 17-item Hamilton Depression Rating Scale (HDRS)57 and the 21-item Beck 
Depression Inventory (BDI-II)58. Depression severity was repeatedly verified one week before- and at the time 
of testing, confirming the presence of MDD during data collection. Patient exclusion criteria included comorbid 
mood disorders with the exception of anxiety disorders, history of psychotic episodes or use of anti-psychotic 
medications, tricyclic anti-depressants and/or long-lasting benzodiazepines, a history of neurological condi-
tions such as loss of consciousness for more than 5 min, head injuries, epilepsy, history of electroconvulsive 
therapy, past or present alcohol/substance abuse, and learning disorders. All patients were taking either Selective 
Serotonin Reuptake Inhibitors (SSRI’s) or Selective Noradrenalin Reuptake Inhibitors (SNRI’s) during data col-
lection. Healthy controls were recruited through newspaper advertisements and had no history of depression or 
other psychiatric disorders. Additionally, all healthy controls were medication free, and all had a BDI-II score of 
< 14 and a HDRS score of < 7 during EEG data acquisition. All 40 participants received renumeration for par-
ticipating and signed informed consent. Lastly, the medical ethics committee of the Ghent University Hospital 
approved of the study’s aim, methods, purposes, and the data collection was performed in accordance with the 
Ghent University Hospital ethics committee guidelines.

EEG procedure and preprocessing. The EEG resting state data were acquired using a 128-channel Bio-
semi Active Two system (http:// www. biose mi. com) within an electrically and acoustically shielded room. The 
EEG amplifier sampled the data at 512 Hz and employed an analogue filter with a bandwidth of 0.01–100 Hz. 
The data were referenced to the Common Mode Sense (CMS) active electrode and the Driven Right Leg (DRL) 
passive electrode. The EEG resting state was collected as 12-min segments (6 min eyes-closed and 6 min eyes-
open, counterbalanced across subjects). Only eyes-closed segments were selected for analysis since the process-
ing of visual scenes can have a confounding effect on the participants resting state  data59.

A semi-automatic preprocessing pipeline was applied in MATLAB (version 2020b, The MathWorks, inc., 
Natick, MA) which utilized functions from the signal processing toolbox and the EEGLAB  toolbox60. Digital 
offline filtering involved a 1 Hz high-pass and a 250 Hz low-pass filter. 50 Hz line noise was removed from the 
timeseries using the cleanline function which utilizes statistical thresholding to substract line noise estimations 
from the original  signal61. Channels containing artifacts were identified using the clean_artifacts function using 
the following 3 parameters: (a) channel flatline lasting longer than five seconds, (b) channel noise exceeding four 
standard deviations relative to its own signal and (c) a correlation < 0.85 with its neighboring channels. General 
data cleaning was performed using the validated Artifact Subspace Reconstruction (ASR)  method62. ASR decom-
poses the timeseries data into principal components and detects artifactual components by comparing specific 
components with components from the data’s cleanest segments. ASR then removes the artifactual components 
and reconstructs the timeseries with the remaining non-artifactual components. Before computing Independent 
Component Analysis (ICA), each subject’s EEG data was re-referenced to the  average63 and a data rank correction 
was implemented. Following ICA decomposition, a Multiple Artifact Rejection Algorithm (MARA) was applied 
on the ICA components. MARA is a supervised machine learning algorithm that flags prevalent artifactual ICA 
components that represent eyeblink-, muscle-, noise- and electrocardiogram  artifacts64. ICA components flagged 
by MARA were first visually inspected prior to removal. Lastly, omitted channels were interpolated using the 
spline interpolation  method65 and both the preprocessed timeseries and its EEG frequency power spectra were 
visually inspected prior to data analysis.

Preliminary analysis. A preliminary analysis was conducted in R (version 4.1.1) on the subjects’ demo-
graphic- and clinical questionnaire data. Chi-square and student t-tests were performed to examine if the study 
groups differed in age, sex, education, and depression severity.

EEG source‑space functional connectivity analysis. EEG functional connectivity was computed in 
source-space using the MATLAB toolbox  Brainstorm66. The USCBrain  atlas67 was selected as the shared brain 
anatomy template across participants. The USCBrain anatomy template (http:// brain suite. org/ uscbr ain- descr 
iption/) is a high-resolution single-subject atlas that was created utilizing both anatomical- and functional data 
for cortex parcellation. Human connectome fMRI  data68 from 40 subjects was used for the functional sub-
parcellation which resulted in 65 regions of interest (ROIs) per hemisphere. Moreover, the Boundary Element 
Method was applied on the USCBrain anatomy template using  OpenMEEG44 to produce a realistically shaped 
head model. This resulted in a head model that was identical for each subject. Individual sensor noise was esti-
mated by calculating a noise covariance matrix on the resting state data of each participant. Only the diagonal 
elements of the noise covariance matrix were used as inputs to estimate sensor noise for the source localization 
model. Current density maps with unconstrained dipole orientations were generated using Minimum  Norm69 
as the source estimation method.

Based on the growing neuroimaging literature that demonstrates a disunion between sgACC–DLPFC activity 
in  MDD23–25,29 and the brain network model for  depression4, the left/right DLPFC and left/right sgACC of the 

http://www.biosemi.com
http://brainsuite.org/uscbrain-description/
http://brainsuite.org/uscbrain-description/
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USCBrain atlas were chosen as ROIs for the source-space functional connectivity analysis (Fig. 1). Functional 
connectivity was estimated between these four ROIs using the AEC method described by Brooks and  colleagues51 
(Fig. 2). In brief, AEC values are calculated by applying a Hilbert transform to the ROI-extracted timeseries data, 
resulting in band-pass filtered analytical signals. The magnitude is taken from these signals and is used to com-
pute power envelopes. Before these power envelopes are calculated, a symmetric orthogonalization procedure 
removes instantaneous signals that are shared between the different ROIs. This results in ROI-extracted power 

Figure 1.  The four ROIs that were used in the source-space functional connectivity analysis performed in 
Brainstorm. The four ROIs include the left Dorsolateral Prefrontal Cortex (green), right Dorsolateral Prefrontal 
Cortex (turquoise), left subgenual Anterior Cingulate Cortex (yellow) and the right subgenual Anterior 
Cingulate Cortex (red).

Figure 2.  Estimating EEG source-space functional connectivity with the orthogonalized Amplitude Envelope 
Correlation method. The computation and statistical evaluation of orthogonalized Amplitude Envelope 
Correlations can be described in six steps: The EEG resting state timeseries data were transformed from sensor-
space to source-space using the Minimum Norm source estimation method (1). Hypothesis driven regions of 
interest (ROIs) were selected from the USCBrain atlas (2) and their timeseries extracted (3) so that predefined 
band-pass filters together with an orthogonalization procedure could be applied. A Hilbert Transform was 
subsequently used to generate the power envelopes of these band-pass filtered signals (4). Correlations were 
then calculated between the power envelopes of different ROIs for each time sample. The average of these 
correlations was taken for each ROI pair which produced connectivity matrices for each frequency band of 
interest per subject (5). Non-parametric permutation tests were then performed, resulting in statistical maps 
that were thresholded using the false discovery rate (6).
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envelopes that have been corrected for spatial leakage artifacts which are a major source of spurious connectivity 
 values43. Finally, linear correlations are calculated between the power envelopes of the different ROIs, resulting in 
a matrix that contains the averaged connectivity values for each prespecified frequency band. Since the frequency 
signatures of MDD are insufficiently understood, we opted to take a broadband approach in our analysis. Based 
on the findings of prior factor-analyses70,71, we investigated the following EEG frequency bands: theta (4–8 Hz), 
alpha (8–12 Hz), beta-1 (13–17 Hz), beta-2 (18–24 Hz), beta-3 (25–30 Hz) and gamma (30–100 Hz).

Differences between the two groups source-space functional connectivity values were statistically evaluated by 
performing two-tailed non-parametric permutation t-tests on the connectivity matrices. These resulting t-value 
maps were thresholded using the Benjamini and Hochberg’s false discovery rate (FDR)  method72, allowing us to 
correct for multiple comparisons introduced by the multiple ROIs and frequency bands.

Correlating EEG source‑space functional connectivity values with MDD characteristics. The 
AEC values of the ROI pair with the strongest effect size were extracted and subsequently correlated with char-
acteristics of depression, namely age of onset, lifetime number of episodes and duration of the current episode. 
The correlations were calculated in R using Monte Carlo permutations since AEC values are non-normally 
distributed. The association between MDD characteristics and AEC values was statistically evaluated using two-
tailed, FDR-corrected tests of the Pearson’s correlation coefficient (r). In addition, a post-hoc analysis of covari-
ance (ANCOVA) was used to examine if age, education level, sex and/or BDI-II scores had an influence on the 
association between connectivity values and MDD characteristics.

Evaluating the Predictive power of functional connectivity data on MDD diagnosis using a 
SVM classifier. A SVM was used (the MATLAB fitcsvm function) to test the predictive power of left/right 
sgACC—left/right DLPFC connectivity on MDD diagnosis. The SVM classifier was trained using the extracted 
connectivity values of 4 ROI pairs (left/right sgACC—left/right DLPFC) to distinguishes MDD patients from 
healthy controls according to prespecified dichotomic labels. We used a Gaussian kernel and the Sequential 
Minimal Optimization solver with a box constraint (the regularization parameter) of 3. All other parameters 
were kept on their default values. Furthermore, the performance was evaluated using the ‘leave-one-out’ cross-
validation method to avoid the overfitting issue.

Results
Participant demographic and clinical characteristics. As expected, MDD patients scored signifi-
cantly higher on BDI-II and HAM-D scores when compared to healthy controls, demonstrating an ongoing 
episode of MDD at the time of testing. In contrast, the analysis revealed no significant differences between MDD 
patients and healthy controls regarding age, sex, and education level. The results and test-statistics of the partici-
pants’ demographic and clinical characteristics are outlined in Table 1.

EEG source‑space AEC functional connectivity differences between MDD patients and healthy 
controls. The two-tailed non-parametric permutation t-tests generated statistical maps that revealed signifi-
cant differences in AEC functional connectivity between MDD patients and healthy controls within the beta-1 
(13–17  Hz) and beta-2 (18–24  Hz) bands (p < 0.01, uncorrected for multiple comparisons). Both frequency 
bands showed diminished AEC functional connectivity for depressed patients and while this was limited to 
the left sgACC–right DLPFC ROI pair for the beta-2 band, all of the ROI pairs exhibited reduced connectivity 
within the beta-1 band. To control for the number of ROI pairs and frequency bands, an FDR threshold was 
applied (q < 0.05, adjusted p value = 0.0056) which yielded a thresholded connectivity map showing decreased 
AEC connectivity for MDD patients within the beta-1 band for the following three ROI pairs: left sgACC–right 
DLPFC, right sgACC–right DLPFC and left sgACC–right sgACC (Fig. 3).

Table 1.  Participant demographic and clinical characteristics. Numerical data entries are in the form: mean 
(SD). Statistical evaluation was conducted with chi-square tests (χ2) and student t-tests (t). HC healthy 
controls, MDD major depression disorder, df degrees of freedom, HS High School, BA Bachelor degree, MA 
Master degree, BDI-II Beck Depression Inventory II, HAM-D Hamilton Depression Rating Scale.

HC (n = 20) MDD (n = 20) Test value df p value

Demographics

Female, N (%) 15 (75) 13 (65) χ2 = 0.12 1 0.73

Age in years, mean (SD) 41.25 (14.6) 36.6 (13.1) t = 1.06 37.55 0.297

Education level, N (%)

HS = 4 (20) HS = 8 (40) χ2 = 2.93 2 0.231

BA = 9 (45) BA = 9 (45) – – –

MA = 7 (35) MA = 3 (15) – – –

Symptomatology

BDI-II 1.45 (3.71) 33.45 (11.41) t = − 11.37 20.22 < .001

HAM-D 0.2 (0.52) 27.56 (5.31) t = − 21.78 17.3 < .001
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Association between AEC connectivity values and depression characteristics. Since the left 
sgACC—right DLPFC AEC values had the strongest effect size, they were extracted and subsequently correlated 
with MDD patients’ age of depression onset, lifetime number of episodes and duration of the current episode. 
The analysis revealed no significant correlation between patients age of depression onset and their extracted 
AEC values. However, a marginal negative association was found between current MDD duration and resting 
state functional connectivity (r = − 0.19, adjusted-p = 0.048, N = 20). More interestingly, reduced sgACC-DLPFC 
connectivity seems to be strongly correlated with the number of depressive episodes a patient has had in his/her 
lifetime (r = − 0.71, adjusted-p = 0.001, N = 20) (Fig. 4). Furthermore, this negative association remained signifi-
cant after controlling for age, sex, education level and BDI-II scores (F(5,12) = 4.72, p = 0.014), suggesting that 
age and current MDD severity are not the driving factors between diminished sgACC–DLPFC connectivity and 
the total number of MDD episodes. This finding potentially signifies that reduced sgACC–DLPFC connectivity 
in the EEG resting state is a marker of a vulnerability to recurrent depressive episodes.

Reduced sgACC–DLPFC connectivity as a diagnostic marker for MDD. Using the ‘leave-one-out’ 
cross validation method, the SVM classifier was able to successfully identify 80% of MDD patients (model sen-
sitivity) employing the EEG resting state connectivity values between the left/right sgACC and the left/right 
DLPFC (4 features). Moreover, 89.5% of healthy controls (model specificity) were accurately identified, resulting 
in an overall model accuracy of 84.6%.

Discussion
In order to minimize the extensive human- societal- and economic costs associated with depression, identifying 
usable markers of MDD will be an essential step toward that goal. Unfortunately, due to the infamous spatial 
issues associated with EEG in the past, research investigating EEG functional connectivity markers of depres-
sion is still in its infancy. To date, no EEG study has looked at aberrant sgACC–DLPFC connectivity within the 
resting state of MDD patients and thus our study addressed the question whether the EEG resting state contains 
disrupted sgACC–DLPFC connectivity within a sample of MDD patients and whether this aberrant connectivity 
has the potential to be utilized as a marker for depression.

Our findings revealed abnormal EEG resting state functional connectivity between the sgACC and the DLPFC 
in depressed patients. More concretely, depressive patients displayed diminished beta-1 (13–17 Hz) band AEC 
connectivity between the left/right sgACC and the right DLPFC when compared to healthy controls (Fig. 3). In 
addition, this reduced sgACC–DLPFC connectivity seems to be related to the total number of depressive episodes 
experienced during a patient’s lifetime (Fig. 4), even when age and current depression severity were taken into 
account. Lastly, sgACC–DLPFC connectivity within the EEG resting state seems to be a promising marker of 

Figure 3.  Diminished Amplitude Envelope Correlation connectivity in MDD patients. Depressed patients show 
reduced functional connectivity in the beta-1 (13–17 Hz) band for the following three ROI pairs: left sgACC 
(yellow)—right DLPFC (turquoise), right sgACC (red)—right DLPFC and left sgACC—right sgACC. This result 
was obtained after FDR thresholding. MDD: Major Depressive Disorder, sgACC: subgenual Anterior Cingulate 
Cortex, DLPCC: Dorsolateral Prefrontal Cortex, FDR: False Discovery Rate.
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depression when applying a SVM classifier, considering the relatively high model accuracy (i.e. 84.6%) based on 
only 4 features (left/right sgACC—left/right DLPFC) in this preliminary approach.

These results support the hypothesis of a negative association between DLPFC and sgACC activity in MDD 
patients when compared to healthy controls. Diminished sgACC–DLPFC connectivity in depression is likely to 
represent the inability of the CCN to inhibit a hyper-active limbic system which results in impaired top-down 
emotion  regulation4,10,11. Furthermore, the DLPFC has been widely recognized to be an effective target site for 
noninvasive neurostimulation treatments with the aim to normalize DLPFC activity and to inhibit excessive 
sgACC reactivity which in turn reduces depression  symptoms73–75. The DLPFC and sgACC seem to be inversely 
correlated in  depression24 and successful TMS treatment normalizes this negative  correlation23. Nevertheless, 
most studies report reduced functional connectivity between the left DLPFC and the sgACC while our results 
show diminished functional connectivity between the right DLPFC and the sgACC. Surprisingly, reducing the 
FDR threshold slightly (q = 0.06, adjusted p-value = 0.009) also reveals reduced connectivity between the left 
DLPFC and both left/right sgACC in the current study. It is possible that both the left- and right DLPFC have 
impaired connectivity with the sgACC in depressed patients, and this notion is supported not only by our own 
findings but by a meta-analysis that did not find a difference in clinical efficacy between TMS stimulation of 
either the left- or right DLPFC for treating  depression31. In addition, Kito and colleagues reported reduced sgACC 
activity after successful low frequency TMS stimulation of the right DLPFC in treatment resistant depression 
 patients34, demonstrating an overlap of therapeutic working mechanisms with high frequency TMS stimulation 
of the left DLPFC. Furthermore, the current data demonstrate that reduced EEG sgACC–DLPFC functional 
connectivity seems to be related to the total number of depressive episodes within a patient’s life. Remarkably, 
one of the few EEG studies that looked at disrupted network connectivity in depression found an association 
between the frequency of depressive episodes and hyperconnectivity between the Default Mode Network (DMN) 
and the CCN, also within the beta-1  band53. This between-network beta-1 band hyperconnectivity may reflect a 
weakened CCN being “hijacked” by an overactive  DMN76,77, sharing an electrophysiologic signature similar to the 
CCN’s inability to regulate the sgACC hyperactivity. Although, this interpretation is compatible with our current 
finding, it is unable to address if aberrant EEG CCN connectivity reflects a biological vulnerability for a recurrent 
illness course or if recurrent depressive episodes increase the intensity of network abnormalities. Further support 
for an association between impaired cognitive control and the lifetime number of depression episodes can be 
found in a 2009 ERP  study78. The authors observed an inverse correlation between the amplitude of a cognitive 
control-related ERP (N450) and the number of prior MDD episodes in a sample of remitted depression patients. 
These results not only corroborate the cumulative nature of cognitive control impairments in depression but also 
demonstrate that these deficits seem to persist, even when patients are in remission. This association between 
impaired cognitive control and recurrent depressive episodes is consistent with the kindling hypothesis of recur-
rent  depression79. The kindling hypothesis states that psychosocial stressors become less relevant for depression 
onset with each subsequent depressive episode and that the onset of successive MDD episodes are increasingly 
independent of environmental influences and events. It is entirely plausible that impairments in cognitive control 

Figure 4.  Scatterplot demonstrating the negative association between the number of depression episodes and 
sgACC–DLPFC Amplitude Envelope Correlation connectivity for depressed patients. Amplitude Envelope 
Correlation connectivity values from left sgACC–right DLPFC were correlated with the number of depression 
episodes a patient has had in his/her lifetime, using non-parametric Pearson correlation coefficients. sgACC: 
subgenual Anterior Cingulate Cortex, DLPCC: Dorsolateral Prefrontal Cortex.
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and difficulties regulating negative emotions increase the likelihood of future depression episodes through a 
reduction in an individual’s ability to cope with life events, big or small.

Some fMRI studies report divergent findings in which sgACC–DLPFC connectivity is enhanced in MDD 
patients. One study found a positive correlation between posterior sgACC–DLPFC connectivity and BDI-II 
scores in subjects with subclinical  depression80, while Davey and colleagues observed increased pregenual ACC—
left DLPFC connectivity in the fMRI resting state of depressed  patients81. A plausible explanation for these 
inconsistent findings is that the DLPFC can become hyperactive in depression in an attempt to downregulate 
sgACC  hyperactivity24. This hypothesis might seem inconsistent with our own observations but can potentially be 
explained by the differences in temporal resolution between EEG and fMRI. Since EEG measures neural activity 
directly, it is able to detect the instantaneous high frequency (> 4 Hz) discordant activity patterns between the 
sgACC and the DLPFC. In contrast, the slower and indirect BOLD signal of fMRI measures a low frequency 
(< 0.15 Hz) timeseries that could represent DLPFC activity that lags behind the hyperactive sgACC, resulting 
in increased connectivity values between the two regions. Similarly, a TMS-EEG study from Hadas and col-
leagues reported decreased effective connectivity between the left DLPFC and the sgACC after successful TMS 
 treatment82. In addition, the reduction in left DLPFC–sgACC connectivity was associated with MDD symptoms 
improvement. This result seems to directly contradict our own observations of reduced DLPFC–sgACC con-
nectivity within a sample of MDD patients. A possible reason for these divergent findings could result from 
methodological differences with respect to how connectivity was estimated. Our own study applied AEC on 
band-pass filtered signals to compute functional connectivity, whereas the study from Hadas and colleagues 
applied a form of effective connectivity on (broadband) current source density values (i.e. source localized volt-
age values). This explanation seems plausible, since other EEG resting state functional connectivity studies did 
observe increased beta-band connectivity between the DLPFC and the sgACC within MDD patients after either 
a successful TMS-83, or pharmacological  treatment52, corroborating the current findings. In addition, Hadas and 
colleagues looked at DLPFC—sgACC connectivity changes within depression patients almost immediately after 
TMS stimulation (i.e. within a 500 ms interval), while our study examined EEG functional connectivity between 
depressed- and healthy participants at rest.

Lastly, sgACC–DLPFC AEC functional connectivity seems to have potential as a diagnostic marker for MDD 
within a machine learning framework. The model performance of 80% to accurately classify depression patients 
based on left/right sgACC—left/right DLPFC connectivity values is promising. Nevertheless, some considerations 
need to be kept in mind when interpreting machine learning classification results. The current study’s sample 
size is small and as a result overfitting can become a  problem84. This is especially problematic in neuroimaging 
research that employs a large number of  features85,86. In order to address this issue a SVM classifier was used 
which can be considered suitable when working with limited sample sizes. Additionally, the total amount of 
features was constrained through selecting hypothesized connectivity differences between patients and controls. 
One advantage of this approach is that it is less likely that model’s performance is based on irrelevant features 
specific to the current dataset. Another advantage of using a hypothesis driven feature selection approach is the 
increase in reliability and interpretability of the results. The disadvantage is that potentially valuable features 
(such as connectivity with other relevant regions) could have been excluded.

Future studies should therefore expand on these findings by attempting to replicate the current study in size-
able datasets. Besides increasing the validity of potential diagnostic markers, it would significantly improve the 
signal-to-noise ratio as well. This increase in signal power would allow researchers to reliably compute measures 
of dynamic functional connectivity such as estimating AEC values within predefined sliding time windows. 
These kind of EEG analyses can offer valuable insight into the temporal aspects of disrupted neural networks 
in MDD. Furthermore, an excellent signal-to-noise ratio would make it possible to develop certain spatial- and 
temporal filters that could drastically reduce the number of electrodes needed to reveal markers of depression, 
further boosting clinical applicability.

In conclusion, our results revealed diminished sgACC–DLPFC connectivity within a sample of MDD patients 
when compared to a sample of healthy controls. In addition, this reduced sgACC–DLPFC connectivity was 
associated with the total number of depression episodes a patient has experienced at the time of testing. The 
diagnostic power of this aberrant connectivity was evaluated using a SVM classifier which resulted in a model 
performance of 80% sensitivity, 89.5% specificity and 84.6% accuracy, suggesting that sgACC–DLPFC functional 
connectivity could be a potential diagnostic marker of depression.

Data availability
The data used in this manuscript are available from the corresponding author (Lars Benschop) on suitable 
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