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A B S T R A C T

We describe BrainSync, an orthogonal transform that allows direct comparison of resting fMRI (rfMRI) time-series across subjects. For this purpose, we exploit the

geometry of the rfMRI signal space to propose a novel orthogonal transformation that synchronizes rfMRI time-series across sessions and subjects. When synchronized,

rfMRI signals become approximately equal at homologous locations across subjects. The method is based on the observation that rfMRI data exhibit similar con-

nectivity patterns across subjects, as reflected in the pairwise correlations between different brain regions. We show that if the data for two subjects have similar

correlation patterns then their time courses can be approximately synchronized by an orthogonal transformation. This transform is unique, invertible, efficient to

compute, and preserves the connectivity structure of the original data for all subjects. Analogously to image registration, where we spatially align structural brain

images, this temporal synchronization of brain signals across a population, or within-subject across sessions, facilitates cross-sectional and longitudinal studies of

rfMRI data. The utility of the BrainSync transform is illustrated through demonstrative simulations and applications including quantification of rfMRI variability across

subjects and sessions, cortical functional parcellation across a population, timing recovery in task fMRI data, comparison of task and resting state data, and an

application to complex naturalistic stimuli for annotation prediction.

Introduction

Resting fMRI (rfMRI) is being increasingly used to study brain con-

nectivity and functional organization (Arslan et al., 2017). In particular,

rfMRI has been used extensively to measure functional connectivity be-

tween different brain regions (Horwitz, 2003; Langs et al., 2014; Smith

et al., 2011; Smitha et al., 2017; van den Heuvel and Hulshoff Pol, 2010).

It is also used for longitudinal studies of brain development and is being

explored as a diagnostic biomarker in cross-sectional studies for various

neurological and psychological diseases and conditions (Redcay et al.,

2013). Large-scale connectivity information derived from rfMRI can be

used to delineate functional regions (Arslan et al., 2017). By extension,

identification of multiple contiguous areas, each of which exhibits

distinct connectivity to the rest of the brain, can be used to define a

functional parcellation of the entire cerebral cortex (Amunts et al., 2007;

Sporns et al., 2005).

Since rfMRI data reflect spontaneous brain activity, it is not possible

to directly compare signals across subjects (Iraji et al., 2016). Instead,

comparisons make use of connectivity features, typically computed from

pairwise correlations of the rfMRI time-series between a point of interest

and other locations in the brain (Fan et al., 2016). For analysis of cerebral

cortex, it is common to compute a feature vector at each location on a

tessellated representation of the cortex as the correlation from that vertex

to all other vertices. For cortically mapped fMRI data, this approach re-

sults in a V dimensional feature vector at each vertex, where V is the

number of vertices in the tessellated representation of the cortex. This

results in a high dimensional feature (correlation) matrix of size V � V .

Not only is the computational cost of working with this correlation ma-

trix high but, since in most cases the number of time samples T is much

smaller than V ; the matrix is singular and dimensionality reduction

should be used to identify a less redundant and more robust feature

vector. Another limitation of working with the spatial correlation is that

this approach does not preserve anytemporal information so that studies

of network dynamics are not directly possible.

Correlation-based analysis can be used for cortical parcellation at

either the subject or group level (Wig et al., 2014). Embedding tech-

niques have also been described to define a functional atlas (Langs et al.,

2014) or for function-based inter-subject registration (Nenning et al.,

2017) using rfMRI data, but again these methods are based on the use of

spatial correlation. An alternative approach that uses the original data,

rather than its correlation, for inter-subject comparisons is group inde-

pendent component analysis (ICA) (Calhoun et al., 2009). Group ICA

concatenates rfMRI data from multiple subjects and represents the data

as a summation of independent spatial or temporal components. In this
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way, common networks across subjects can be identified. To make use of

data from multiple subjects, it is common to concatenate data based on a

fixed anatomical correspondence across subjects. This can limit the

ability to identify individual differences with respect to the group inde-

pendent components.

Another recent technique for inter-subject comparison is hyper-

alignment (Haxby et al., 2011) which aligns multi-subject brain data in a

high-dimensional functional space. This method was used to build a

common model of the ventral temporal cortex that captures visual object

category information. Hyperalignment maps data from multiple subjects

into a common space using a Procrustes fit that computes an orthogonal

transform which maps each subject to a common reference subject across

a set of voxels. The more recent extensions of this work (Guntupalli et al.,

2016; Guntupalli and Haxby, 2017) define connectivity hyperalignment,

which minimizes distance between target regions in different subjects

based on connectivity vectors computed for each subject. While both

forms of hyperalignment share the use of orthogonal transforms with the

BrainSync transform we describe below, they differ in the use of spatial

or connectivity features in place of the direct application of an orthogonal

matrix to the time series as we describe.

The SMIG (Small Memory Iterative-Group PCA) approach (Hyv€arinen

and Smith, 2012) uses rotations to find the optimal approximation of

fMRI data for a group of subjects in terms of a set of group spatial patterns

(a matrix) and an associated set of time series matrices (one per subject).

SMIG iteratively solves this problem by alternating between updating the

spatial patterns and the time series matrices, with the latter computed

under an orthogonality constraint. The resulting approximation is

effectively the PCA of the group data, but computed without the need to

directly decompose the entire concatenated set of data. The method has

similarities to the BrainSync transform in the sense that the fMRI data are

effectively aligned across subjects in order to compute the spatial pat-

terns. The goal of SMIG is to find a common (reduced dimensionality)

representation which can be used, for example, to perform a group-level

parcellation (Smith et al., 2014). In contrast, the orthogonal BrainSync

transform also aligns data across subjects, but in such a way that all of the

information in the original data are retained so that we can, for example,

compute individual parcellations while still exploiting similarities in the

data, as described below.

Here we describe BrainSync, a novel transform for inter-subject

comparison of fMRI signals in which a transformation is applied that

allows direct comparison of time-series across subjects. We represent

normalized (zero mean, unit norm) rfMRI time-series data as a set of

labeled points on the hypersphere. We then describe an orthogonal

transformation that makes the rfMRI data from two subjects directly

comparable. The BrainSync transform retains the original signal geom-

etry by preserving the pairwise geodesic distances between all pairs of

points on the hypersphere while also temporally aligning or synchro-

nizing the two scans (Joshi et al., 2017). This synchronization results in

an approximate matching of the time-series at homologous locations

across subjects. The synchronized data can then be directly pooled to

facilitate large-scale studies involving multiple subjects from

cross-sectional as well as longitudinal studies. We show applications of

BrainSync to rfMRI as well as illustrate how it can be used for task fMRI

through examples involving motor function and annotation prediction.

Materials and methods

We assume we have rfMRI and associated structural MRI data for two

subjects. Our goal is to synchronize the rfMRI time-series between these

two subjects, although the method extends directly both to multiple

sessions for a single subject or synchronization across multiple subjects.

Our analysis below assumes that the rfMRI data has been mapped onto a

tessellated representation of the mid-cortical layer of the cerebral cortex.

The cortical surfaces for the two subjects must also be non-rigidly aligned

and resampled onto a commonmesh, as can be achieved using FreeSurfer

(Fischl, 2012) or BrainSuite (Shattuck et al., 2002).

Denote the cortically mapped rfMRI data for the subjects as matrices

X and Y , each of size T � V , where T represents the number of time

points and V is the number of vertices in the cortical mesh, with V≫T.

Corresponding columns in X and Y represent the time-series at homol-

ogous locations in the two brains. The data vectors in each column in X

and Y are normalized in pre-processing to have zero mean and unit norm.

The BrainSync transform

Since the time-series at each vertex is of unit norm, we can represent

each column of X and Y as a single point on the unit hypersphere ST�1 of

dimension T � 1T

Let x! and y! represent time-series from two points in the brain. Then

the inner product of x! and y! yields the Pearson correlation ρ
x! y! be-

tween them. Distance between points on the hypersphere depends only

on the correlation between their respective unit-length vectors, so that

highly correlated time-series will appear as tight clusters of points. Dis-

tance between clusters on the hypersphere will reflect the degree of

correlation between their respective time-series. The inverse cosine of

ρ
x! y! gives the geodesic distance between the points on the hypersphere.

The squared Euclidean distance between them is given by ð x!� y!Þ2 ¼

2� 2ρ
x! y! and so is also solely a function of ρ

x! y!. It therefore follows

that if two subjects have similar connectivity patterns to each other, then

both intra- and inter-cluster distances are similar, resulting in a similar

configuration of points on the hypersphere for the two subjects. In other

words, we would expect the patterns for two subjects to differ from each

other primarily by a rotation and/or reflection of one hypersphere with

respect to the other. With this picture in mind, we compute an orthogonal

transformation (rotation and/or reflection) that will map the data from

one subject onto that of the other based on the following result (Boutin

and Kemper, 2004):

Let x!1; ⋯; x!V and y!1; ⋯; y!V be points in ℝ
T . If jj x!i � x!jjj ¼ jj

y!i � y!jjj; 8i; j 2 f1; ⋯; Vg, then there exists a rigid motion ðO; tÞ such that

x!i ¼ O y!i þ t; 8i 2 f1; ⋯; Vg, where O is a T � T orthogonal matrix and

t 2 ℝ
T ; representing rotation/reflection and translation respectively. Since in

our case the points are on a hypersphere ST�1, we can exclude the

translation and apply a strict orthogonal transformation.

The orthogonal transform Os that synchronizes the two data sets, X

and Y , is chosen to minimize the overall squared error:

O
s ¼ argminO2OðTÞ

�

�

�

�X � OY
�

�j2
F

where OðTÞ represents the group of T � T orthogonal matrices and
�

�

�

�⋅

�

�jF
represents the Frobenius norm. Given the high dimensionality of the

surface vertices (V � 32;000) relative to the number of time samples

ðT � 1; 200Þ in the data analyzed below, the problem is well-posed and

can be solved using the Kabsch algorithm (Kabsch, 1976). Following the

derivation in (Sorkine, 2009), we first form the T � T cross-correlation

matrix XY t , where trepresents the transpose operator, and then

compute its singular value decomposition (SVD): XY t ¼ UΣV t . The

optimal orthogonal matrix is then given by:

O
s ¼ UV

t

The synchronized data is given simply by Y s ¼ OsY . Note that all the

steps in the computation involve relatively small amounts of memory and

are computationally inexpensive since we form and decompose the T �

T temporal cross-correlation matrix that is much smaller than the V � V

spatial cross-correlation. Cross-subject synchronization can be computed

in a few seconds on a regular desktop PC.

To illustrate the behavior of the BrainSync transform, we applied this

orthogonal transformation to data from a pair of rfMRI data sets from the

Human Connectome Project (HCP) database described and explored

more extensively below. Fig. 1 shows a single frame from the video M1
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(supplemental material) depicting the sample subject, reference and

synchronized subject data plotted on the cortical surface. Fig. 2 shows an

example of the time-series before and after BrainSync for the same vertex

for the two subjects. While the synchronization makes the time courses of

the two datasets similar, individual variation is retained after the trans-

formation as manifested in the differences in spatial activation patterns

between the reference and synchronized subject data. This is to be ex-

pected and is an important feature of the proposed transform: the

BrainSync transform aligns the components of the spatiotemporal data

that are common (with respect to their representation in the hyper-

sphere) but will also retain any individual differences. The impact of

synchronization can be seen more clearly in the video M1 (supplemental

material). We note that the transformation is not restricted to be a simple

nonlinear scaling or a permutation of the time series. Rather, the trans-

formed time series values at a particular vertex at each point in time are,

in general, a linear function of the values at all time points at that vertex.

Supplementary video related to this article can be found at https://

doi.org/10.1016/j.neuroimage.2018.01.058.

To illustrate the concept of BrainSync, we performed the following

experiment. We used rfMRI data resampled onto the cortical surfaces for

three subjects, denoted as subject 1, subject 2 and reference, with T ¼

1200 time samples per vertex (see Section 2.3 for details of the rfMRI

data used). For illustrative purposes, we need to reduce dimensionality to

ℝ
3 so that we can plot the data on the S2 sphere. We considered data

from only three locations: cingulate, motor cortex and visual cortex. We

projected this data onto the ℝ
3 subspace corresponding to the three

largest singular values in the data matrix for each subject and renor-

malized to unit length. Only three regions were considered for this

illustration so that embedding to three dimensions is possible. This data

is of sufficiently low rank that we can indeed see the clustering of points

on the sphere (Fig. 3 (a)). Fig. 3 (b) shows the result of applying the

BrainSync orthogonal transformation from the two subjects to the

reference in the original T ¼ 1200 -dimensional space, and then mapping

back to the unit sphere using the same projection onto ℝ
3 as used to

generate the result in Fig. 3 (a). We included two subjects in this example,

one for which the orthogonal matrix was a pure rotation (determinant ¼

1) and the other that included a reflection (determinant ¼ � 1). The

transformed data represented on the sphere for both subjects is now very

similar to that of the reference. Note that the dimensionality reduction to

three dimensions using PCA was performed only for the purposes of

illustration and visualization. BrainSync does not require dimensionality

reduction and was not performed for any of the applications presented in

this paper.

Properties of the BrainSync transform

The BrainSync transform has some interesting as well as useful

properties. It is an orthogonal transform and hence invertible. Orthogo-

nality also ensures that the spatial correlation structure (brain connec-

tivity) contained in the original data is preserved. Because of this

property, the ‘synchronization’ performed by BrainSync transformation

can be interpreted as a lossless transformation of the original data such

that the brain connectivity patterns are preserved, and the data can be

compared across subjects using the regular Euclidean metric and Fro-

benius norms. The transformation is unique due to the uniqueness of the

SVD used to compute the transform (assuming no repeated singular

values in XY t ¼ UΣV t). It can be shown that the transform is inverse-

consistent (Christensen and Johnson, 2001), i.e. switching the refer-

ence X and subject Y results in a transformwhich is the inverse ofOs, and

results in the same cost. The transformation is not necessarily associative,

i.e. if X is synchronized to Y using the transformation O1 and Y is syn-

chronized to Z using O2, then the transformation O3 that synchronizes X

to Z is not necessarily equal to O2O1. However, it can be shown that if

instead of considering O2 that synchronizes Y to Z, we consider ~O2 that

synchronizes O1X to Z, then we have the equality O3 ¼ ~O2O1. This

property shows that synced data can be used as a surrogate for the

original data.

Due to the lack of associativity, the results of a multi-subject study

using BrainSync will depend on the choice of reference subject to which

all others are synced. However, we expect that these differences will be

small if the reference subject's connectivity is representative of the

population in the study. A simple strategy of using the reference with

smallest average distance to the rest of the subjects in the study popu-

lation is used in Section 4.2 below. Since the BrainSync transform is fast,

Fig. 1. A single frame from the animation of synced data is shown. (left) subject, (middle) reference and (right) subject synchronized to reference. An animation

showing the dynamic changes in these data is included in video M1 (supplemental material).

Fig. 2. Representative time-series for two subjects for a single cortical location before and after synchronization from a subject to the reference subject.
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performing all possible pairwise synchronizations in a given study pop-

ulation will also typically be computationally tractable.

Since X and Y are normalized, and due to the properties of Frobenius

norm and trace operators, the minimization of the Frobenius norm
�

�

�jX � OYjj2F is equivalent to the maximization of TraceðXtðOYÞÞ ¼

TraceððOYÞtXÞ. The left-hand side is proportional to spatial correlation,

i.e. the sum of the spatial dot products of the X images and the trans-

formed Y images. On the other hand, the right-hand side is the temporal

correlation, which is the sum of the temporal dot products of the X time

series and the transformed Y time series. Therefore, the optimization of

the cost function leads to maximization of both spatial and temporal

correlations.

Note that the group of T � T orthogonal transformations is repre-

sented by matrices with det ¼ �1. The rotations in higher dimensions

are defined as the transformations represented by matrices with det ¼ þ

1, while combinations of rotations and reflections are represented by

matrices with det ¼ � 1. For the BrainSync transform we observed both

cases with equal frequency. The group of orthogonal transformations has

two connected components corresponding to matrices with det þ1 and

�1 respectively. Luckily this does not present a problemwhen solving the

optimization problem to find the orthogonal transform since a closed-

form solution exists and an iterative search is not required.

Data description and preprocessing

We used the minimally preprocessed (ICA-FIX denoised) resting fMRI

data from 40 randomly selected subjects (all right-handed, age 26–30, 16

male and 24 female), which are publicly available from the Human

Connectome Project (HCP) (Barch et al., 2013; Glasser et al., 2013; Smith

et al., 2013; Van Essen et al., 2013; Woolrich et al., 2001). These data

were acquired for four independent resting fMRI sessions (LR_1, LR_2,

RL_1, RL_2) of 15min each (TR¼ 720ms, TE¼ 33.1ms,

2 mm� 2mm� 2mm voxels) with the subjects asked to relax and fixate

on a projected bright cross-hair on a dark background. Here we use the

LR_1 sessions and the LR_2 sessions to evaluate the performance of

BrainSync. The pre-processing pipeline includes processing of T1W im-

ages of each subject using FreeSurfer (Fischl, 2012) for identification of

cortical surfaces and co-registration of the surfaces to a common atlas.

These surfaces were then registered to a common standard cortical sur-

face mesh (32K Conte-69). rfMRI data were corrected for acquisition

artifacts and subject to a non-aggressive spatiotemporal clean up (Glasser

et al., 2013). The time-series data were then linearly resampled onto the

mid-cortical surfaces generated by FreeSurfer and then transferred to the

grayordinate representation defined by the 32K Conte-69 surface

(Glasser et al., 2013). The 15min of scan time with TR¼ 720ms resulted

in 1200 time samples per voxel. From the available grayordinate data, we

extracted only the data corresponding to the cortical surface.

The task-related results presented below are based on the task-

localizer data also made available by the HCP. Task-based fMRI data

(Barch et al., 2013) were obtained for the same 40 subjects in language

processing and motor strip mapping task domains. To identify regions of

language processing, subjects perform an interleaved math and story

task. In the motor category, subjects are told to move certain parts of the

body (tongue and left/right hand) to identify the functional areas asso-

ciated with the respective movement. For the motor tasks, HCP also

provides the task timing blocks that indicate the start and stop times for

each task.

The other dataset we used for this work is available from the Study-

forrest project (http://studyforrest.org) and centers around the use of the

movie Forrest Gump, which provides complex sensory inputs that are

reproducible and rich with real-life-like content and contexts (Labs et al.,

2015). The dataset encompasses fMRI scans, structural brain scans,

eye-tracking data, and extensive annotations of the movie. We consid-

ered phase II (Hanke et al., 2016) of the study that involves audio-visual

stimuli resulting from the subject watching and listening to the movie

while whole brain fMRI scans were acquired using a 3T scanner. An

annotation dataset is also available with the imaging data in which a total

of 12 observers independently annotated emotional episodes regarding

their temporal location and duration. For this preliminary investigation,

we use only the ‘face’ annotation (presence of faces in the video).

We processed the Studyforrest fMRI datasets using the fcon1000

pipeline (Mennes et al., 2013) that uses a combination of FSL and AFNI.

The pre-processing for functional data included deobliquing, motion

correction, skull stripping; rigid coregistration to structural images and

then to MNI space; nuisance signal (white matter and CSF) removal; 3D

Fig. 3. Illustration of the BrainSync concept: (a) Data from motor (red), cingulate (green) and visual (blue) areas was considered. Representation of this data on a

hypersphere is depicted. Dimensionality reduction was performed using PCA. (b) Three datasets (reference and two subjects) from these areas was used as input to

PCA. Dimensionality of the data was reduced to 3D and renormalized to generate the mapping to the sphere. Application of BrainSync to the two subjects relative

to the reference results in a configuration of data on the sphere similar to that for the reference dataset. Subject 1 requires only rotation while subject 2 requires

rotation and reflection for synchronization.
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spatial smoothing (FWHM¼ 2.35mm); global mean removal; temporal

bandpass filtering (0.005 Hz–0.1 Hz); and removal of linear and

quadratic trends. Processing of the structural MPRAGE data was per-

formed using BrainSuite (Shattuck et al., 2002). BrainSuite includes a

multi-step cortical modeling sequence. These steps include

skull-stripping; tissue classification; labelling of cerebrum, cerebellum,

and brainstem; white matter mask generation; topology correction; white

matter surface generation; pial surface generation. This is followed by a

surface constrained volumetric registration sequence (Joshi et al., 2012)

that performs labelling and coregistration of the subject to a standard

atlas. The fMRI data were then resampled onto the Brainsuite cortical

surface representation using linear interpolation. To map this dataset to a

common space with the HCP datasets we then registered this surface data

to the 32K Conte-69 surface using FreeSurfer and FSL.

We performed additional downsampling of the HCP and Studyforrest

surface fMRI data to ~11K vertices using Matlab's ‘reducepatch’ func-

tion. We then applied denoising to the fMRI data using nonlinear tem-

poral non-local means (tNLM) filtering (Bhushan et al., 2016). In contrast

to traditional local Gaussian filtering, tNLM filtering reduces noise in the

fMRI data without spatial blurring between regions of different func-

tional specializations. To achieve this, tNLM uses the weighted average of

data in a large neighborhood surrounding each vertex where the weights

are chosen adaptively depending on similarities between the fMRI time

series at the vertices. Specifically, the tNLM filtered fMRI signal f ðs; tÞ at

vertex s and time t is expressed as  f ðs; tÞ ¼ 1
P

r2NðsÞ
wðs;rÞ

P

r2NðsÞ

wðs; rÞdðr; tÞ

where dðs; tÞ is the original unfiltered signal, NðsÞ is a vertex neigh-

bourhood of s; and the weights are given by wðs; rÞ ¼

exp

0

B

@
�

1
TjjdðsÞ�dðrÞjj2

h2

1

C

A
. We chose the parameter h ¼ 0:72 and a neigh-

bourhood NðsÞ consisting of all vertices no more than 11 edges from s,

based on the recommendations in (Bhushan et al., 2016). Unless other-

wise stated, all data used in the results presented below are based on

tNLM-filtered data.

Finally, we normalized the filtered resting fMRI time-series at each

vertex to zero mean and unit norm by subtracting the mean of the time-

series for each vertex and scaling by the corresponding norm of the zero-

mean time-series.

Simulation and experimental studies of the properties of the

BrainSync transform

Effect of scan length on synchronization

Since the BrainSync transform is based on the hypothesis that brain

networks are similar across subjects, we expect performance to improve

with number of samples T. For larger T, estimation of the sample cor-

relation matrices become more accurate, and therefore more similar

across scans or subjects.

In order to test how well the synchronization works for different scan

lengths, we considered rfMRI scans X and Y from different subjects, each

of size T � V. Each of these scans were truncated to shorter time lengths t

and renormalized. The truncated scans, denoted by Xt and Yt ;   were

synchronized using BrainSync to produce the orthogonal transformation

Ot , such that OtYt becomes similar to Xt . The correlation ρt ¼ Xt ⋅Yt be-

tween truncated scans was computed before and after synchronization

and averaged over the cortex. We considered 40 distinct pairs of subjects

for the cross subject comparison. For the within-subject case, we syn-

chronized two sessions of each subject, for a total of 40 subjects, and

averaged correlation over the cortex. The plots in Fig. 4 show mean

correlation and standard deviation across subjects for different time

lengths T.

While synchronization of signals continues to improve with longer

scans, BrainSync achieves close to the maximum correlation at around

5min (T � 400). The shaded regions denoting standard deviations in the

‘after synchronization’ cases are generally very small indicating consis-

tency of the result across subjects.

Permutations of vertices

The transform that synchronizes the rfMRI data across scans is based

on the assumption that the brain networks in the two brains are similar to

each other, although they are not required to be identical. To test if this

hypothesis is required for synchronization to work, and to ensure that the

synchronization is not simply due to the data being low-rank, the

following statistical comparison was performed.

Data (tNLM filtered) for two subjects X and Y was synchronized and

the pairwise correlation between their corresponding points on the

cortical surface was computed. It can be seen in Fig. 5 (b) that the pair-

wise correlations were high after synchronization across most of the

brain, compared to the low correlation that we obtain before the signals

are synced (Fig. 5 (a)). Next, we performed a random permutation of the

rows of the data matrix of X. This operation results in a permuted data

Fig. 4. Average correlation over the cortex before and after synchronization, as a function of number of time samples (TR¼ 0.72 s), for (left) within subject across

two sessions; (right) across subjects. Mean and standard deviations across subjects are shown as line plots and shaded areas respectively.
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matrix Xp that has the same singular value structure as X, however the

correlation with Y will be different since the permutation destroys the

vertex correspondence. The permuted data Xp was then synchronized to

Y using BrainSync. The correlations after permutation was low before

syncing (Fig. 5 (c)), and remained relatively low after syncing (Fig. 5 (d))

relative to the unpermuted case (Fig. 5 (b)). To test for statistical sig-

nificance, we repeated the permutation procedure 1000 times to

generate correlation maps similar to (d). These maps form a null distri-

bution for the case where we would not expect meaningful synchroni-

zation. The positive correlation after transformation of the permuted data

can be explained by the observation that the BrainSync transform will

always attempt to maximize correlations, resulting in some degree of

positive correlation even for data that do not satisfy our underlying

assumption of common networks. Furthermore, even after permutation

we would still expect some degree of (random) correspondence between

the two brains, particularly for the larger networks that occupy a sig-

nificant fraction of the cerebral cortex. To determine whether the results

for synchronization of the original (unpermuted) correlations in (b) are

significant they were tested against the null distribution. The p-values

were corrected for multiple comparison using the Benjamini-Hodgeberg

false discovery rate (FDR) procedure (Benjamini and Hochberg, 1995)

(Fig. 5 (e)). This test showed significance throughout the cortex with

p-values close to zero at almost all points on the cortex. This result

confirms that the high correlation after syncing seen in Fig. 5 (b) is not

simply due to low rank structure, and is consistent with our hypothesis

that it is the underlying common spatial correlation patterns across

subjects that allows alignment of data across subjects.

Detection of localized differences between scans

We performed a test to study the ability of BrainSync to identify and

localize, both spatially and temporally, deviations in activity and con-

nectivity from resting behavior. This may occur for example as a subject

transition from ‘resting’ to performing a specific task, and back again.

Deviations may also be caused by pathology such as inter-ictal spiking in

an epileptic subject. For this test, we used two sessions of resting data

from a single subject. A block of white Gaussian noise was added to the

spatiotemporal data matrix for one scan scaled so that the full-time series

for each affected vertex had unit norm. The resulting datasets were

synchronized to each other. The residual error after synchronization

shows that the resting signal in the two datasets was relatively well

synchronized while the noise block is clearly not, Fig. 6. This simulation

illustrates the potential for BrainSync to localize differences between

scans, both spatially and temporally.

Applications to in-vivo data

Application 1: quantifying variability of rfMRI across a population

To investigate within-subject variability, we computed the correla-

tion at each vertex between two sessions in the same subject after syn-

chronization and averaged the result over all 40 subjects, Fig. 7 (a). To

compute between-subject variability, we performed pairwise synchro-

nization for all 40� 39=2 ¼ 780 pairs. We then computed the between-

subject correlations at each vertex after synchronization, averaged over

Fig. 5. BrainSync for two subjects. Each map shows the cross-correlation between time-series from homologous locations in the two subjects as follows: (a) before

synchronization, (b) after synchronization. The spatial ordering of the vertices for the second subject were then randomly permuted and the cross-correlation

recomputed: (c) before synchronization, (d) after synchronization; (e) the random permutations were repeated 1000 times to generate a null distribution of

the correlations and the correlation map in (b) was tested against this null distribution to test for significance. The resulting p-values, corrected for multiple

comparisons using FDR, were close to zero throughout the cortex, except at a few points, as shown in (e).

Fig. 6. Absolute value of difference between two scans of rfMRI data from two sessions of a single subject. A noise block is added in one of the scans as can be seen

at the central region of the images, (a) difference before syncing; (b) difference after syncing. After syncing, the region in which the two scans are qualitatively

different is clearly visible.
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all pairs and plotted the result as the maps shown in Fig. 7 (b).

Within-subject variability across sessions reveals that most of the

brain exhibits repeatable patterns of correlation, which lead to accurate

syncing. Examples of areas with lower correlation include the temporal

lobe and medial frontal cortex, possibly due to lower signal amplitudes

(and hence lower signal to noise ration) from these regions. Across

subject correlations are lower than within-subject correlations as might

be expected. Nevertheless, the regions showing higher correlations are

similar to those found within individuals.

For additional insight, we computed the mean and standard deviation

(s.d.) of the between-subject correlations, both for tNLM filtered and

unfiltered data. For this study, we first computed the Fisher-z transform

to normalize the correlations, then computed mean and s.d. of the

transformed data over all pairs of subjects, Fig. 8. Histograms for each of

the four cases, computed across the cortex, are shown in Fig. S1 (sup-

plemental material). These results show low correlation before syn-

chronization, with or without tNLM filtering. We also see that without

filtering, the post-sync correlations are lower than for the filtered data.

This follows from the fact that tNLM filtering tends to reinforce compo-

nents in the time series that are strongly correlated with those at other

vertices, as described in (Bhushan et al., 2016). Without filtering, cor-

relations will be considerably lower, as they are when computing rfMRI

correlations between vertices in a single subject.

Fig. 7. Average correlation between resting fMRI time series at each vertex after applying BrainSync: (a) across two sessions within the same subject, averaged

over 40 subjects; (b) across subjects, averaged over all pairs and two sessions.

Fig. 8. Mean and standard deviation maps for between subject correlation of resting fMRI before and after applying BrainSync, and with and without tNLM

filtering. Maps are shown after computing correlation across all pairs of subjects, taking Fisher-z transform of the correlations and averaging across all sub-

ject pairs.
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Application 2: cortical parcellation

Parcellations of the human cerebral cortex representing cyto-, myelo-

or chemo-architecture are helpful in understanding the structural and

functional organization of the brain (Amunts et al., 2007; von Economo

and Koskinas, 1925). Resting fMRI has been used for identification of

contiguous areas of cortex that exhibit similar functional connectivity to

define a functional parcellation (Arslan et al., 2017; Sporns et al., 2005).

One major problem in using rfMRI for single subject parcellation is that

the amount of data from an individual is usually not sufficient to reliably

parcellate the cerebral cortex brain into a large number of regions (Arslan

et al., 2017; Rubinov and Sporns, 2010). An alternative approach is to

pool data across subjects, although this typically requires definition of an

anatomical correspondence across subjects which results in a single

group parcellation that does not account for individual functional dif-

ferences. A second challenge that arises in both single subject and group

parcellations, is that the feature vectors used for parcellation are often

defined by the correlation from each surface vertex to all other vertices

(Fan et al., 2016). These are very high dimensional so that

down-sampling is commonly used to make the problem tractable (Iraji

et al., 2016). Recent approaches have been described that use graph

theory and constrained optimization to accelerate group parcellation

while preserving individual characteristics (Chong et al., 2017; Wang

et al., 2015), but computational cost remains high and there is a

dependence on parameters used to define the underlying statistical

models.

Here we explore the use of BrainSync for parcellation. Since Brain-

Sync makes data across subjects directly comparable, this synchronized

data itself can be used as a feature vector for parcellation, and since its

dimension is equal to the number of time samples, it is significantly

smaller than the correlation-based feature vectors just described. Our

approach is straightforward: we first select a representative subject (see

below) and sync all other subjects to that subject. We then treat the

synced time series at each vertex as the feature vector for that subject and

vertex. Finally, we jointly parcellate the data for all subjects using k-

means clustering (MacQueen, 1967; Thirion et al., 2014) with one

feature vector per vertex in each subject.

For joint parcellation, we used two sessions of 15min scans for the 40

subjects. Let Bl;m represent the T � V data matrix for the lth subject and

mth scan, all synchronized to the reference. A data matrix was then

generated as B ¼ ½B1;1;B1;2; B2;1;B2;2;⋯;B40;2� as illustrated in Fig. 10

(b). This matrix has size T � ð2� 40� VÞ with T being the dimension of

the feature vector. The k-means algorithm was then applied to cluster the

data into k ¼ 17; 40 and 100 clusters. In other words, each vertex in

each of the 40� 2 brain scans were separately assigned to one of the k

clusters. Note that since the time series are synchronized across scans, k-

means clustering can treat the time series themselves as a feature vector

and produce a label vector of size 2� 40� V . We do not enforce any

spatial prior or topological constraint on the labels and the clustering

does not make use of the vertex position, so that the time series from

corresponding vertices in different subjects and scans are treated

independently.

We choose a reference as the most representative subject across the

population of 40 subjects. To do this, we performed pairwise synchro-

nization of the rfMRI data for all 40� 39=2 ¼ 780 possibilities. After

synchronization, the residual RMS error e ¼ X � OYF was computed

between each pair and used as a measure of dissimilarity. We then chose

the subject with the minimum average distance to all other subjects. To

visualize the distance between subjects we entered the pairwise errors

into a 40� 40 distance matrix where the ði; jÞth entry indicates the dis-

tance between subject i and j. We then used the multidimensional scaling

(MDS) algorithm (Torgerson, 1952) and reduced the dimensionality of

the data to two for visualization of relative distances between all subjects

(Fig. 9).

For comparison, we applied two alternative approaches. In the first,

we produce a single parcellation by stacking the unsynchronized data for

each vertex label from each subject as illustrated in Fig. 10 (a). In this

case the data matrix is of size ðT � 2� 40Þ � V where ðT � 2� 40Þ is the

dimension of the feature vector. We then applied the k-means clustering

method to label each of the V vertices. We also applied k-means clus-

tering to each data set separately, i.e. to data matrices of size T � V , with

feature vector size T, for each of the 40� 2 data sets.

The single group parcellation for K¼ 100 is shown in Fig. 10 (a) and

sample parcellations for two subjects, two sessions each, are shown in

Fig. 11 using individual clustering and joint BrainSync-based clustering.

For comparison of results we used the Hungarian algorithm (Kuhn, 1955)

for label matching between individual results, the joint labelling, and the

BrainSync results. Note that for BrainSync-based clustering, corre-

sponding regions are automatically identified across subjects since the

same k clusters are used to label all subjects.

The individual parcellations (Fig. 11 top row) vary significantly, even

for the same subject for two different scanning sessions. In contrast, the

individual parcellations produced using BrainSync transformed data

(Fig. 11, bottom row) show similar results for different sessions of the

same subject, even though the clustering algorithm treated the two data

sets as equivalent to those from separate subjects. In other words, the

assignment of each vertex to one of the k clusters was done indepen-

dently for the two sessions for each subject. The BrainSync data shows

differences in labelling between the two subjects shown in Fig. 11, but

also closer similarity to the joint parcellation result from the fully

concatenated data in Fig. 10(a) than we see in the individual parcellation

results in the top row of Fig. 11.

To quantify performance, we computed the Adjusted Rand Index

(ARI) (Hubert and Arabie, 1985) between all pairs of subjects and scans

and report both within-subject and across-subject similarity by averaging

across subjects and sessions respectively in Table 1. ARIs were computed

for both the individual and BrainSync-based parcellation. Table 1 shows

substantially higher within and between subject consistency when

labelling using all synchronized data, than when labelling each subject

and session separately. In Table 1 we also compare the individual and

BrainSync parcellations to the single group parcellation result. Again, the

BrainSync results show significantly closer similarity to the group result

than do the individual parcellations.

We emphasize that there is no spatial prior or across subject similarity

constraint used for the BrainSync-based clustering. Because the data are

synchronized across subjects and sessions, k-means clustering automat-

ically produces label correspondence across subjects. The fact that the

Fig. 9. Result of applying MDS (multidimensional scaling) to the synchro-

nized data to identify the (circled) representative subject who has the smallest

average distance to all other subjects in terms of the error e ¼ X� OYF .
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clusters are made up of one or more contiguous regions for both the in-

dividual and group results arises in part from the filtering effects of tNLM,

which emphasizes temporal similarity when filtering the data. This

property is also shown in (Bhushan et al., 2016) for parcellation of tNLM

filtered data based on normalized cuts.

One way to interpret these results is that the data for each subject

forms a constellation on the hypersphere of the signal space. We are

effectively parcellating this pattern on the hypersphere into k regions.

The constellations for individual subjects are too sparse to be successfully

parcellated individually as the boundaries for a single subject are poorly

defined. However, when the constellations of all the subjects are aligned

by rotations/reflections of their signal space hyperspheres, they can be

pooled to successfully to perform a joint clustering of all subjects

simultaneously while still retaining individual differences.

Fig. 10. (a) The rfMRI data from N¼ 40 subjects, 2 sessions each, was temporally concatenated to generate a 2NT � V data matrix, as shown on the left. This data

matrix was input to k-means clustering, with feature vector of dimension 2NT and k¼ 100, to generate a single common parcellation for all brains. (b) The

BrainSync'ed data were arranged as T � 2NV matrix and input to k-means clustering with a feature vector of size T to jointly produce an individualized par-

cellation of each subject, as shown in Fig. 11.

Fig. 11. Representative individual parcellation results (k¼ 100) for two subjects, two sessions each. Upper row: each brain parcellated separately; lower row:

joint parcellation using the synchronized time-series.

Table 1

Adjusted Rand Indices: mean(s.d.) for different number of clusters (k) for group, individual and BrainSync-based parcellation.

ARI Individual

k¼ 17

BrainSync

k¼ 17

Individual

k¼ 40

BrainSync

k¼ 40

Individual

k¼ 100

BrainSync

k¼ 100

Within subject 0.79(0.05) 0.95(0.03) 0.48(0.13) 0.94(0.02) 0.42(0.12) 0.93(0.03)

Across subjects 0.68(0.11) 0.91(0.04) 0.46(0.15) 0.91(0.03) 0.32(0.16) 0.90(0.03)

Compared to group parcellation 0.69(0.12) 0.93(0.03) 0.49(0.14) 0.92(0.03) 0.33(0.17) 0.91(0.04)
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Applications to task fMRI

Contrasting task vs rest

We applied BrainSync for direct comparison of resting and task fMRI.

For this purpose, we synced motor activity (tongue movement) with

resting data from the HCP database for the same subject. At each point on

the brain, the correlation between synced task and resting data was

computed (Fig. 12). Despite the fact that we are comparing task and

resting data, much of the brain can still be synchronized. Exceptions for

the motor task (Fig. 12 (b)) include the face-region of primary motor

cortex and portions of the default mode network (DMN). This result is

consistent with the idea that we would expect increased motor activity

and decreased default mode activity during the motor task. Similarly, for

the language task (Fig. 12 (a)), we see reduced synchronization between

task and rest in language-related and DMN areas.

Predicting timing information

To further investigate the behavior of BrainSync, we considered two

sessions of task data for a single subject. This task data involved a block

design with different motor tasks involving tongue, right and left feet as

well as hand motion in different timing blocks. While the two sessions

involved identical tasks and involved all of these motor actions, their

timing blocks were different. Here, we demonstrate the ability of the

BrainSync transform to predict the timing blocks of the second session

given the timing blocks of the first session. The first session's rfMRI was

synchronized to the second and the resulting orthogonal transformation

Os then applied to the T � 1 time-series that defines the timing blocks for

the first session. Since the data used for computing the BrainSync

transform are BOLD fMRI signals, the time-series denoting the timing

blocks were first convolved with a hemodynamic response function

(HRF) modelled using a double gamma distribution (Steffener et al.,

2010). The function we used as the HRF hðtÞ is given by hðtÞ ¼ t5
expð�tÞ
Γð6Þ �

t15
expð�tÞ
6Γð16Þ . As shown in Fig. 13, the rfMRI synchronization matrix Os al-

lows us to estimate the task timing of the second session from the first

with relatively high accuracy.

Application to Studyforrest data

To investigate the applicability of the BrainSync transform to tasks

involving self-paced activities and naturalistic stimuli, we used the

Studyforrest dataset (Labs et al., 2015). The data description and our

preprocessing are detailed in Section 2.3. For two segments of this data,

our goal was to predict annotations of the second segment based on the

annotations of the first segment. Here, we consider only the ‘face’

annotation. In order to generate the annotations, 12 raters watched the

movie annotating withþ1 when a full face was present, 0 for no face. The

annotations were then averaged across the 12 raters and smoothed

temporally by Gaussian smoothing with a standard deviation of 5 s. Two

segments of data were considered. The first segment of fMRI data was

synchronized to the second and the resulting BrainSync transform then

applied to the annotations of the first segment to predict the annotation

of the second. This process was repeated using the data from 8 subjects to

predict the annotations for one, which were then averaged. The anno-

tations from the two segments and the predicted annotations are shown

in Fig. 14. The correlation of annotations from segment 1 and 2 before

synchronization was 0.02. Averaging the predicted annotation over 8

subjects resulted in a correlation of 0.51 with the human rater values

averaged over the 12 independent raters.

Discussion

We have described a novel method for synchronization of rfMRI data

across subjects and scans. By exploiting similarity in correlation structure

across subjects we are able to transform the time-series so that they

become highly correlated across subjects. This synchronization process

bears similarity to rigid image registration. In the case of structural

comparisons, spatial alignment of images makes cross-subject and lon-

gitudinal studies easier by providing approximate point-wise corre-

spondences in space. Similarly, BrainSync facilitates functional

comparisons: temporal alignment (synchronization) provides an

approximate point-wise correspondence in time.

Pointwise comparisons of fMRI data

The BrainSync transform gives us a unique ability to perform direct

pointwise comparisons (in time and space) between time-series data from

resting fMRI scans across multiple sessions and subjects. As shown in

Fig. 8, pointwise comparisons of unsynced data result in low correlation

and high variation (mean¼ 0.05, s.d.¼ 0.21) uniformly throughout the

brain when computed across all pairs of 40 subjects in a normal popu-

lation. With BrainSync, significantly higher correlation and lower vari-

ance (mean¼ 0.35, s.d.¼ 0.16) is achieved throughout the brain.

Additional filtering using tNLM results in even higher correlations and

lower variance (mean¼ 0.82, s.d.¼ 0.08) indicating that denoising with

tNLM helps improve synchronization. We see slightly higher variance in

the primary visual cortex which may be indicative of the differences of

subject behaviors within the scanner (Martinez-Conde et al., 2004).

Subjects were asked to fixate on a cross on the screen and avoid blinking

(Glasser et al., 2013). Adherence to this task may be difficult and we

suspect that subjects may have had differences in eye movement affecting

the dynamic BOLD activity in the visual cortex. The pointwise study of

mean and variance of inter-subject correlations could be used to inves-

tigate individual or group differences in connectivity. Comparison of

correlation of an individual synced to each of a set of control subjects

could be used to identify regions of abnormal connectivity associated, for

example, with epileptogenic networks. This approach would be

conceptually similar to measures of local functional connectivity density

(Tomasi and Volkow, 2010). Similarly, group-wise comparisons could be

used to identify connectivity differences between groups. The utility of

pointwise comparisons is again demonstrated in Section 4.3.1 where we

detect regional differences between task and rest by synchronizing

resting and task fMRI within a single subject. Fig. 12 b shows differences

between motor and default mode areas when comparing motor task to

rest. For the language task, Fig. 12 a, there are clear differences in

Wernicke and Broca's areas as well as visual andmedial prefrontal cortex,

which is consistent with the areas identified by (Barch et al., 2013;

Binder and Desai, 2011) for this task.

Group level analysis

Synchronized data can be easily pooled to increase the amount of

information to perform group-level analysis when information from a

single subject is sparse. We demonstrate the utility of pooled data in a

population-based joint parcellation of the cerebral cortex using syn-

chronized rfMRI data. As seen in Fig. 11, the boundaries detected within

a single subject across different scanning sessions are inconsistent, indi-

cating the information obtained from a single session to be too limited for

consistent and reliable cortical parcellation. This discrepancy increases

when compared across subjects. The joint-parcellation facilitated by

using synchronized time-series data was able to detect more consistent

boundaries between homologous regions. Small differences can still be

seen across subjects, potentially reflecting individual differences in

functional specialization (Amunts et al., 1999). Standard group-level

analysis using anatomically coregistered data will retain large-scale

common features within a group but may lose unique features of indi-

vidual subjects. Conversely, BrainSync can exploit connectivity similar-

ities across subjects, while retaining individual variations since we do not

constrain cluster labels to be consistent across subjects with respect to the

anatomical alignment.

These potential benefits extend to studies of dynamic connectivity. A

sliding window approach is the most common method of investigating
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dynamic functional connectivity (Damaraju et al., 2014; Hindriks et al.,

2016). However, this approach only allows for measures of dynamic

connectivity to be computed within a single subject and single session

since dynamic activity in spontaneous ‘resting’ periods will be different

for each individual and session. Syncing time-series data, however,

should bring common patterns of correlated activity into temporal

alignment, potentially allowing pointwise analysis of dynamic connec-

tivity across subjects for a more robust group level analysis.

Utility of orthogonal transformation

In Section 4.3, we demonstrate the ability to perform synchronization

of resting with task fMRI and also between two task data sets, even when

the timing of the task blocks was different. The resting to task synchro-

nization, Fig. 12, shows regions in which the task-related signal differs

from resting activity. We can also use the computed orthogonal matrices

to synchronize time series associated with the BOLD signal, Fig. 13. This

ability to predict task block timing from the synced data, as we demon-

strate for the motor task, has potential applications where task variables

cannot be directly controlled in the experimental design. For example,

self-paced or other cognitive studies in which event timing cannot be

directly measured.

The application to the Studyforrest data was able to use the syn-

chronized data to predict the presence of faces in the video, Fig. 14. The

‘face’ time series for segment 2 was computed by the BrainSync trans-

formation of the corresponding time series for segment 1, with the

orthogonal matrix computed from their respective BOLD fMRI data sets.

The correlation of 0.51 with the average over 12 independent rater an-

notations indicates the potential for BrainSync-based temporal alignment

to make inferences about stimulus or emotional content from measured

fMRI data provided a training fMRI data set with known content timing is

available. Our attempts to predict emotional content (‘love’, ‘fear’,

‘happiness’) from the same data set were less successful and not reported

here since to date our analysis has been restricted to the cortical surface

and does not include the amygdala, which would be expected to play a

major role in responses to these factors. Currently, machine learning

approaches are being applied to predict brain activity based on stimuli

and vice versa (LaConte et al., 2005). Extensions of BrainSync may be

able to contribute in this area.

The hyperalignment technique (Haxby et al., 2011; Guntupalli et al.,

2016; Guntupalli and Haxby, 2017) has some similarity to our approach,

Fig. 12. Task data: Correlation between resting and synchronized (a) language task, (b) motor tongue task time-series.

Fig. 13. Task data timing recovery: (a) red: HRF convolved timing blocks for session 1; black: HRF convolved timing blocks for session 2; and blue: timing for

session 1 after applying the orthogonal transformation predicted by BrainSync to timing blocks for (left) tongue and (right) right hand motor tasks.

Fig. 14. Face annotation from segment 1 (blue); from segment 2 (red); and

predicted annotation (black).
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in that both techniques estimate an orthogonal transform. But the goal of

the hyperalignment is to match spatial or connectivity patterns by an

orthogonal transform. Time synchronization is not performed so the

original timing is unaltered. BrainSync, in contrast generates a T � T

orthogonal matrix and aims for temporal alignment of the signal. A

combination of hyperalignment and BrainSync may be able to perform a

joint spatiotemporal alignment.

Since the transformation is orthogonal, correlations in the original

data are preserved and the transform is invertible. The BrainSync

transform is fast, requiring only seconds on a laptop and has computa-

tional complexity OðT3Þþ OðT2VÞ. One of the implicit assumptions in

this work is that the rfMRI signal is stationary in the sense that correla-

tion patterns are preserved over time. Our results show good corre-

spondence of signals over the 15-min windows used in this analysis.

However, even within a 15-min period we would expect to see variations

in the activity of different networks, and it would be interesting to

explore whether BrainSync is able to enhance our ability to identify and

characterize these dynamic changes in network activity.

Limitations and future directions

Synchronization of time-series data become better with an increasing

number of time points and decreasing noise. The goodness of fit after

synchronization in Fig. 4 indicates that 5min of acquisition (with TR ¼

0:72 secs) produces close to the minimum error, relative to longer time

courses. Syncing of shorter time courses should probably be avoided

since the error increases rapidly below this limit.

By considering all possible pairs after syncing across subjects (Section

4.1), we avoid bias towards any individual. However, in the parcellation

study (Section 4.2) we sync to a single individual in order to produce a

feature vector of a reasonable size (T ¼ 1200). To reduce bias, we select

the most representative subject based on a distance measure as described

above. However, since we are syncing everyone to a single subject, the

results may tend to emphasize differences in that individual from the

population. The recursive scheme described in (Guntupalli et al., 2016),

in which results are averaged across subjects as alignment is performed,

could be adapted as a means of avoiding this bias. More generally, we

could reformulate the optimization problem to compute the orthogonal

transform that minimize the average error in the fit of each subject to all

others. This may avoid the bias problem, but would lead to a more

complex problem without the simple closed form unique solution we

obtain for the pairwise case.

We have not explored the robustness of BrainSync to technical chal-

lenges including differences in image acquisition parameters, field

strength, andmanufacturer, whichmay affect the analysis of multi-center

data. Further testing will be required to investigate this issue.

Conclusion

The BrainSync transform1 allows direct comparison of time-series

data between homologous points of registered brains and has a wide

range of possible applications. The main contribution of this work is to

define, we believe for the first time, a method for rotating time series so

that spontaneous brain activity can be synchronized across different

scans from the same subject and also between scans from different sub-

jects. Our results indicate that when combined with tNLM filtering, we

are able to achieve correlations of 0.8, averaged across the brain, be-

tween the synchronized resting time series across subjects at homologous

locations. Because the transformation retains the temporal information in

each data set we are able to explore dynamic aspects of data, which

would not be possible when using the spatial correlation matrix. For

example, we show that block-design functional task data can be

synchronized, either to each other or to resting data. By applying the

estimated orthogonal matrices to time series representing either the task

timing (e.g. for motor activity) or stimulus content (e.g. presence of faces

in a movie), we were also able to predict the timing of these events from

the fMRI data. Potential applications include identification of group and

individual differences in connectivity, individualized functional parcel-

lation, studies of dynamical connectivity, and inference of event timing

and emotional responses from fMRI data.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.

org/10.1016/j.neuroimage.2018.01.058.
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