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Abstract 

The objective of this work is to predict cognitive scores of individuals, specifically, Performance IQ, 

Verbal IQ and ADHD index, using their resting fMRI (rfMRI) and structural T1 weighted (sMRI) 

imaging data. In this project, we use a deep learning approach for modelling relationship between 

rfMRI and sMRI data of individuals and their cognitive performance scores.  

First, we process the rfMRI and sMRI data of subjects using our BrainSuite fMRI Processing (BFP) 

pipeline that performs the anatomical and functional preprocessing, resulting in a fMRI as well as 

geometric (anatomical) features represented in a standardized grayordinate system. Our neural 

network is a combination of convolutional and standard neural network where it processes the 

cortical data using convolutional layers and subcortical data using standard neural network. 

The geometric and functional cortical data corresponding to the two hemispheres was transformed 

to 128x128 multichannel images and inputted to convolutional layers of a neural network while 

subcortical data was presented in a standard vector form and inputted to standard input layer of the 

network. 

The neural network was implemented in Python using Keras library with TensorFlow backend. The 

training was done on 168 images and we used 90 images for testing. We observed significant 

correlation between predicted and actual values of the cognitive scores indicating significant 

predictivity of the scores from the MRI based imaging markers. The correlation values for combined 

anatomical and functional features-based prediction were higher than the individual features, while 

among anatomical and functional features, functional rfMRI based features were more predictive of 

the cognitive scores. 
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Description of Purpose 

Anatomical (T1-weighted) and functional (fMRI) MRI techniques offer insight into structure and 

function of the human brain. Multiple studies have been able to identify brain regions associated 

with different cognitive scores such as IQ [1]. However, prediction of the cognitive scores based on 

these MRI imaging techniques remains a challenging task and has attracted attention recently [2], 

[3] because the relationship between high level cognitive functions revealed by cognitive scores and 

the brain structure and functional activations during resting state is highly unclear. The neural 

underpinnings of individual differences in intelligence is not well understood [4]. 

Here, we propose a deep learning approach that uses rfMRI data and geometric features extracted 

from anatomical T1 weighted MRI images to predict three cognitive scores, namely, verbal IQ, 

performance IQ and ADHD index. 

Methods 

We used the BrainSuite fMRI pipeline [5] to process the rfMRI subject data and generated 

grayordinate representation [6] of the preprocessed rfMRI signal. We used the BrainSync transform 

[7] to align rfMRI data in the subject population to a representative subject. This was followed by a 

dimensionality reduction along the temporal dimension to 21, using PCA, with the basis chosen from 

average signal from subjects. This results in a 21-dimensional vector representing functional features 

at each grayordinate point. 

In order to generate geometric features we computed the shape index (S), mean curvature (C) and 

cortical thickness (T) [8]. These features were generated on the mid-cortex at 5 different smoothness 

levels, resulting in a 15-dimensional geometric feature at each point in the cortex. These features 

were mapped to the grayordinate system (Figure 1). 

As input to the neural network model, we mapped the cortical hemispheres in the grayordinate 

systems to unit squares of size 128x128 (Figure 2). Additionally, the data from 31870 subcortical 

points was also inputted to the neural network. This forms the input of size 128x128xC (2 

hemispheres) and 31870xC (subcortical) data as input, where C=15 for geometric features based 

prediction, C=21 for fMRI based prediction and C=36 for the combined prediction model. 
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We used a neural network inspired from VGG model [9] that uses a combination of convolutional, 

fully-connected, dropout, pooling and flattening layers with ReLu activations. In addition to the 

convolutional layers from VGG model, we also added standard neural network model for the 

subcortical representations as shown in Figure 3. The neural network was implemented in Python 

using Keras library that uses TensorFlow backend. The Adam optimizer was used for training the 

network. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: (Left) fMRI data mapped to cortex and 

subcortical regions for grayordinates. (Right) Shape 

index (S), curvature (C), and thickness (T). 

 

 

Figure 2: Input to the neural network. The cortical 

data was mapped to squares and subcortical data 

was vectorized according to grayordinate 

convention. 

 

Figure 3: The Neural Network model is a combination of convolutional neural network and 

standard neural network. Geometric and functional features were mapped to the flat maps for the 

two cortical hemispheres and were inputted to a VGG style CNN, whereas standard neural 

network was used for data for the subcortical regions.  
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The study population comprise of 259 subjects (typically-developing controls: 146, ADHD 

combined: 46, ADHD inattentive: 66, ADHD hyperactive: 1) that were collected as a part of ADHD 

200 competition [10]. In this study, we did not subdivide the population according to groups, but 

used their ADHD index as a cognitive measure to be predicted. 

The subjects were scanned at the Peking University the fcon1000 protocol [10]: resting scan (TR=2 

sec, 2mm isotropic 5 min) and an MPRAGE scan (1.2x1x1.2 mm) on a Siemens SIEMENS 

MAGNETOM trio 3T scanner. 

The training was done on 169 subjects. For the Adam optimizer, a batch size of 10 was used with 8 

subjects for computing the update to the weights and 2 subjects used for computing the cross-

validation error. The weights were updates when the cross-validation error decreased. The small 

batch size was used in order to avoid overfitting.  20 Epochs were performed. The training was done 

on a 20 core Xeon computer. GPU acceleration was not used for this dataset. The training takes ~4 

hours. Once the model is trained, it was used to predict the three cognitive scores on a test dataset of 

remaining 90 subjects. 

Results 

In order to analyze the performance of the predictions, we computed correlation between predicted 

values of the three cognitive scores and the actual values. This computation was performed for (1) 

functional features computed from rfMRI data, (2) geometric features computed from shape of the 

cortex, and (3) combination of both rfMRI and shape features. The results show that the combination 

of fMRI and geometric features results in an improved predictability of the cognitive features. 
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Conclusions 

We observed significant correlation between predicted and actual values of the cognitive scores 

indicating significant predictivity of the scores from the MRI based imaging markers. The correlation 

values for combined anatomical and functional features-based prediction were higher than the 

individual features, while among anatomical and functional features, functional rfMRI based features 

were more predictive of the cognitive scores. 

This study indicates the potential of rfMRI imaging as a screening test for various neurological and 

psychological conditions. 

 

 

 

 

Figure 4: The table on the left shows correlation between actual and predicted cognitive scores for 

prediction based on shape features only, rfMRI features only, and the combination of the two. The 

plot on the right shows scatter plot of actual and predicted ADHD index using the combination of 

shape and rfMRI features, for the test population. Authors' a
ccepted version
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