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ABSTRACT

Due to the spontaneous nature of resting fMRI (rs-fMRI) signals, cross-subject comparison and group studies
of rs-fMRI are challenging. Existing group comparison methods typically reduce the fMRI time series either to
lower-dimensional connectivity features or use ICA to reduce dimensionality. We previously developed BrainSync,
an orthogonal transformation that allows direct comparison of fMRI time-series across subjects.! This orthogonal
transform performs a temporal alignment of time-series-at homologous locations across subjects allowing a
direct comparison of scans. In contrast with existing fMRI analysis methods, this transform does not involve
dimensionality reduction and preserves the rich functional connectivity information in fMRI data. BrainSync
Alignment (BSA) is an extension of this approach that jointly synchronizes fMRI data across time-series data
for multiple subjects.? Point-wise distance measures, or.Pearson correlations, can be computed between the
reference and synchronized time-series as measures.of inter-subject differences in functional connectivity at each
location in the brain. In group studies, especially in the case of spectrum disorders, distances to a single atlas do
not fully reflect the differences between subjects that may lie on a multi-dimensional spectrum. Here we describe
an approach that measures the distances between pairs of subjects instead of to a single reference point.?> We
present novel pairwise statistical methods for fMRI that can be used for regression and also for identifying group
differences. We demonstrate the effectiveness of our method in two studies: /(i) pairwise comparisons of fMRI
data in subjects for performing regression to an ADHD index, and (ii) an F-test using pairwise statistical analysis
to compare traumatic brain injury (TBI) subjects that develop post-traumatic epilepsy (PTE) to those that do
not.
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1. DESCRIPTION OF PURPOSE

The fMRI signal acquired during rest (rs-fMRI) has been used extensively to measure functional connectivity
between different brain regions.*=3 It is also widely used for longitudinal studies of brain development and as a
diagnostic biomarker in cross-sectional studies for various neurological and psychological diseases and conditions.”

Since rs-fMRI data reflect spontaneous brain activity, it is not possible to directly compare resting-state
signals across subjects. Instead, comparisons typically make use of connectivity features,'® which are often
computed from pairwise correlations. of the rs-fMRI time-series between a point of interest and other locations
in the brain.!! In this work, we present novel pairwise statistical methods and use it for (i) a regression problem
that use pairwise comparisons of fMRI data of subjects for performing regression to a clinical variable,'? and (ii)
identifying group differences, y performing an F-test using pairwise statistical analysis to compare two groups of
subjects.

2. METHODS
2.1 Data
2.1.1 ADHD200 Dataset

The data for the study consisting of 259 subjects (typically-developing controls: 146, ADHD combined: 46,
ADHD inattentive: 66, ADHD hyperactive: 1) was acquired on a Siemens Trio 3-Tesla scanner at the Peking
University which was collected as a part of the ADHD-200 Global Competition (Peking University data).t? 14
The data is available for download through the ADHD 200 competition website(http://fcon_1000.projects.



nitrc.org/indi/adhd200). Of the 265 subjects, only subjects with ADHD indices measured using the ADHD
Rating Scale IV (ADHD-RS) were retained. This ADHD index measures symptoms based on Inattention and
Hyperactivity-Impulsivity.'® 150 subjects were used as test subjects and comprised of 85 ADHD subjects
(age=12.0 £ 2.0; 75M:10F; ADHD Index=>50.6 & 8.5) and 65 control subjects (age=11.1 4 1.8; 39M:26F; ADHD
Index=29.246.3). 50 additional control subjects (age=11.3+1.8; 29M:21F; ADHD Index=30.1+6.5) were used
to create a reference fMRI atlas.

2.1.2 Maryland MagNeT's data

A second set of imaging data was obtained from 215 subjects which are publically available from FITBIR
(https://fitbir.nih.gov). The data was collected as a part of a prospective study that includes longitudinal
imaging and behavioral data from TBI patients with a Glasgow Coma Scores (GCS) in the range of 3-15 (mild to
severe TBI). Imaging was performed on a 3T Siemens TIM Trio scanner (Siemens Medical Solutions, Erlangen,
Germany) using a 12-channel receiver-only head coil. For statistical analysis, we used 37 subjects with epilepsy
(26M/11F) from this dataset and 37 randomly selected subjects without epilepsy (27M/10F) from the same
dataset.! The age range for the epilepsy group was 19-65 years (yrs) and 18-70 yrs for the non-epilepsy
group. Injury mechanisms included falls, bicycle or sports accidents, motor vehicle collisions, and assaults.
The individual or group-wise GCS, injury mechanisms, and clinical information is not shared. For this study,
we used imaging data acquired within 10 days after injury. Seizure information was recorded using follow-up
appointment questionnaires. Exclusion criteria included a history of white matter disease or neurodegenerative
disorders including multiple sclerosis, Huntington’s disease, Alzheimer’s disease, Pick’s disease, and a history of
stroke or brain tumors.

2.2 Preprocessing

The rs-fMRI data was processed and analyzed using the BrainSuite Functional Pipeline (BFP). The processing
and statistical analysis pipelines are publically available online (https://github.com/ajoshiusc/bfp). BFP
is a software workflow that processes fMRI and T1 data using a combination of software that includes Brain-
Suite (https://brainsuite.org), AFNI (https://afni.nimh.nih.gov), FSL (https://www.fmrib.ox.ac.
uk/fsl), and MATLAB scripts. Unique features of the BFP_ pipeline include cortically-constrained volumetric
registration,'!” 18 Global PDF-based non-local means filtering (GPDF)'%2° and BrainSync alignment of resting
fMRI time series.?!'?? Starting from raw T1 images, BFP uses BrainSuite to perform brain extraction, tissue
classification, generation of brain surfaces and coregistration to a reference anatomical atlas. fMRI processing
includes motion correction, skull stripping, grand mean scaling, temporal filtering, detrending, spatial smoothing,
nuisance signal regression and GPDF filtering. fMRI images are coregistered to T1 images and then transformed
onto atlas space.

BFP produces processed fMRI data represented both on surface and volume co-registered with BrainSuite’s
BCI-DNI atlas®® as well as a grayordinate based representation.?*2> The grayordinate representation is a
common space containing both cortical surface vertices and subcortical volume voxels where the cerebral cortex
is modeled as a surface mesh, whereas the globular subcortical nuclei are modeled as volume parcels.2® Secondly,
the volumetric space generated by BEP comprise of a 51 x 70 x 70 voxel-matrix volume at 3mm isotropic resolution
in BCI-DNI atlas space.??> We performed statistical analysis in both coordinates for demonstration.

2.3 Regression-Study

To explore the effects of ADHD on the brain, we performed a pairwise regression analysis by selecting 2000
random pairs from 150 test subjects of the Peking University data (Section 2.1.1). For each pair, we synchronized
the two subjects and computed the euclidean distance between the two time series at each vertex (fmri-diff).
We also computed the difference between the ADHD indices of the two subjects (var-diff) in each pair. Then
we computed Pearson correlation between fmri-diff and var-diff across 2000 random pairs at each vertex and
converted to p-values (o < 0.05) using a permutation test (2000 permutations). False discovery rate (FDR;
q=0.05) was controlled for using the Benjamini-Hochberg method.?” To test the reproducibility of the tests, we
repeated the entire experiment for the pairwise statistic with a second set of 2000 randomly selected pairs. For
additional verification that the significance that we find is not by chance, randomly permuted ADHD indices
were assigned to the subjects and the test was repeated.



For comparison, we used the atlas-based method (BSA)? to create an average atlas from 50 control subjects
not already included in the testing group, then synchronized the 150 test subjects to the atlas. At each point,
we used the euclidean distance between the synchronized time-series of the subject and the atlas as a voxel-wise
univariate statistical feature. We correlated this measure to the ADHD indices and p-values were obtained using
a permutation test (2000 permutations, o < 0.05, FDR ¢=0.05).

2.4 Group Comparison study

We also demonstrate the use of pairwise statistics for group differences by comparing TBI subjects with PTE
to those without (non-PTE). We compared 37 PTE and 37 non-PTE subjects-from the Maryland MagNeTs
dataset.?® Pairwise differences were computed in PTE and non-PTE groups. Variance for each group at each
point in the brain was computed from a pairwise statistic by comparing their synchronized time-series. A voxel-
wise F-statistic was computed by taking the ratio of variances of the PTE and non-PTE groups and was converted
to the p-value at each point in the brain. FDR correction was performed on the p values (o < 0.05; ¢g=0.05). For
comparison, we also repeated the experiment using an atlas based method. A reference atlas was created using
BSA from the 37 non-PTE subjects. Euclidean distances were computed from each subject to the atlas and
group tests were performed. To test for the group differences between the PTE and non-PTE groups, at each
point the brain, we used distance of fMRI signals between each subject and the atlas as the test statistic. We
performed F-test to compare functional heterogeneity within PTE group compared to the heterogeneity within
non-PTE groups. We expect that PTE group will have higher functional heterogeneity compared to the nonPTE

group.

3. RESULTS
3.1 Regression study

Results of the correlation tests between ADHD Indices and fMRI measures substantially differed between the
atlas-based method and pairwise test (Fig. 1). In the atlas-based methods, strongly correlated points were found
sparsely throughout the brain with clusters in the frontal pole, temporal lobe and insular cortices. However,
after FDR correction, only 3 small clusters remained. The pairwise test, on the other hand; showed large, highly
significant clusters across the frontal, temporal and insular cortices, even after- FDR correction. Significant, yet
sparser clusters of regions were also found posteriorly.

The resulting spatial map of the cortex in Fig. 1 shows an association of executive function networks to the
ADHD indices. Especially, large clusters can be found throughout the frontal lobe, motor cortices, temporal lobe
and anterior insular cortex. Similar results were found between the repeated pairwise tests (Fig. 2, top) while
randomly permuting ADHD indices (Fig. 2, bottom) showed inconsistent and sparse results.
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0.05

Uncorrected

FDR Corrected

2000 random pairs from 0
150 subjects

150 subjects + 50 for atlas

Figure 1. Results of regression using pairwise testing in the volumetric space after FDR correction (a < 0.05).
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Figure 2. Top row: Repeated pairwise experiment using 2000 random pairs; Bottom row: same experiment as that in the
top row but with random permutation of ADHD indices

Figure 3. The results of linear regression using pairwise statistical analysis for ADHD in the volumetric space. The
thresholded map of p-values is shown after FDR correction (« = 0.05), overlaid on the USCBrain atlas in the background.

Pairwise tests performed volumetrically in the BCI-DNI brain atlas coordinates resulted in similar results
to those performed in grayordinate space. Large clusters remained in the frontal, temporal, motor and insular
cortices. We can see additionally in Figure 3, involvement of the striatal and thalamic nuclei.

3.2 Group comparison study

In the group comparison study between PTE and non-PTE subjects, the pairwise statistical method in grayordi-
nate space showed significant group differences throughout the brain (Fig. 4). Some of the larger clusters found
in the dorsolateral-prefrontal cortex, temporal-occipital-parietal junction, precuneus, motor areas and visual cor-
tex. Large distributed patterns were observed rather than a localized effect possibly indicating that changes in
connectivity in large distributed networks are responsible for the development of PTE. These results are largely
consistent with the lesion analysis results obtained earlier in the same population.?? The atlas-based method on
the other hand, did not show significance after FDR. correction.

4. CONCLUSIONS

In comparison to the atlas-based method, the pairwise test was found to be more sensitive to localizing regions
correlated with ADHD Indices and in identifying group differences in PTE vs non-PTE subjects. The rs-fMRI
data provides a high dimensional feature at each point in the brain, and group comparisons of these features
could be performed in the high dimensions directly. For comparing distributions in high dimensional spaces, use



Figure 4. Results of the pairwise F-test between PTE and nonPTE group in grayordinate space after FDR correction was
performed on the p-values.

of reproducing kernel Hilbert space (RKHS) has been desribed in the literature:> 3% 31 Our current analysis uses
Euclidean distance, after BrainSync synchronization, as the metric.: Using RKHS may lead to further gains in
statistical power. Our preliminary results using kernel-based methods show promising results.??
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