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Abstract—Stereotactically implanted Electro-Encephalography 

(SEEG) in patients with epilepsy provides a unique insight into 

spontaneous human brain activity. Exploring dynamic functional 

connectivity in spontaneous SEEG signals provides a rich 

framework for studying brain networks. Tensor decomposition is a 

powerful tool for decoding dynamic networks, capturing the intrinsic 

interactions between multiple dimensions with less restrictive 

constraints than traditional 2D matrix decomposition methods such 

as PCA and ICA. Tensor decomposition, however, is seldom used for 

decoding large resting brain datasets due to its high computational 

complexity and poor robustness. In this paper, we describe a Scalable 

and Robust Sequential Canonical Polyadic Decomposition 

(SRSCPD) framework that can sequentially and robustly identify 

tensor models of successively higher rank. We demonstrate that 

SRSCPD is not only more robust than the popular Alternating Least 

Square (ALS) algorithm, but can also be extended to large-scale 

problems. 

Index Terms—Tensor decomposition, dynamic functional 

connectivity, stereotactic EEG, optimization 

I. INTRODUCTION 

ensor decomposition, including both the Canonical 

Polyadic (CP)  and Tucker models, is a natural model for 

data that can be represented as a multi-dimensional array. 

Standard (2D) matrix decomposition methods such as principal 

component analysis (PCA) and independent component 

analysis (ICA) applied to “matricized" or unfolded tensor data 

[1] are not able to capture the intrinsic interactions and 

couplings across dimensions. Moreover, the CP decomposition 

has a unique solution under milder conditions than the 

orthogonality or independence assumptions implicit in PCA or 

ICA [2], [3].  Therefore, when analyzing brain networks, the 

structure inherent in tensor analysis allows us to avoid the 

perhaps unrealistic assumption that networks behave 

independently of each other. 

The CP decomposition can be computed via several 

algorithms. Among these, alternating least square (ALS) is 

widely used because of its relative simplicity [4]. ALS-based 

CP decomposition has been widely used in EEG analysis by 

transforming the raw EEG recordings to a time-frequency 

representation using either short-time Fourier transforms or 

wavelets, and applying a 3-way CP decomposition (channel by 

time by frequency) [5].  Möck [6] applied CP to event-related 

potentials (ERP).  Miwakeichi et al. [7] analyzed both 

spontaneous and evoked EEG recordings and showed that theta 

activity was predominant during a task condition, while alpha 

activity was observed continuously during both rest and task 

conditions. CP decomposition has also been applied to ictal 

EEG recordings from patients with epilepsy. The extracted 

components have been used to localize the seizure onset zone 

[8] as well as to remove artifacts [9]. 

Exploring functional connectivity (FC) in spontaneous or 

resting brain signals offers a rich framework for studying brain 

networks [10]. Of particular recent interest is the dynamic 

nature of functional connectivity [11]. The most commonly 

used strategy for decoding dynamic FC (DFC) is to compute the 

correlation or coherence using a sliding window. Using 

sufficient samples to obtain robust FC estimates inevitably 

leads to over-smoothing of dynamic changes. Alternative 

methods, including various ICA-based approaches are reviewed 

in [11]. A limitation of ICA is that either the time series of each 

network are required to be independent (temporal ICA) or the 

spatial modes of the networks are disjoint (spatial ICA),  

whereas real networks can overlap and be correlated in both 

space and time [12]. In contrast, the CP decomposition does not 

impose any specific constraint on any domain, and since the 

decomposition is performed directly on the tensor 

representation of the raw data, the temporal smoothing 

associated with sliding window methods is avoided. Thus CP 

decomposition is a potentially powerful tool for exploring DFC, 

although we are unaware of any literature explicitly combining 

CP and DFC. Two main issues, however, have limited the use 

of the CP model for studying DFC. 

Scalability: Previous studies, such as [7]–[9], [13], [14], 

almost always truncate the data into short temporal segments 

(up to a few thousand time samples) in EEG ictal and event 

related potential recordings, in order to make the CP 

decomposition tractable. However, a typical 10-minute 

stereotactic EEG recording consists of at least 120,000 time 

samples, even after decimating to a sampling rate of 200 Hz.  In 

order to compute CP decompositions on data of this size, a fast 

and efficient algorithm is required. 

Robustness: It is well known that the ALS algorithm is not 

guaranteed to converge to a global minimum or a stationary 

point, even when multi-start is applied during the optimization 

[1], [4]. The local minimum problem becomes more severe as 

the number of components increases. Performance is further 

compromised when a larger number of components than 

necessary are fit to the data, resulting in over-factoring, i.e. 

splitting rank-one components into two or more factors. 

Several techniques have been explored to improve the 

robustness and efficiency of the ALS algorithm. For example, 
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Rajih et al. [15] added a line search after each major ALS 

iteration. Navasca et al. [16] applied Tikhonov regularization 

on each sub-problem in the ALS iteration. These modifications 

result in significantly higher computational cost at each 

iteration, limiting their practical utility, particularly for large 

scale problems. 

II. NOTATION AND PRELIMINARIES 

A. CP Decomposition 

CP decomposes a tensor into a sum of rank-one tensors or 

components. For a three-order tensor 𝓧 ∈ ℝ$×&×' 

𝓧 = 𝒂* ∘ 𝒃* ∘ 𝒄*

.

*/0

+ 𝓔 (6) 

where 𝒂* ∈ ℝ
$, 𝒃* ∈ ℝ

&, 	𝒄* ∈ ℝ
', 𝑅 is the rank or the number 

of components, 𝒂 ∘ 𝒃 denotes the outer product between 𝒂 and 

𝒃 and 𝓔 is the error tensor. If we group the components in each 

mode into a matrix, i.e. let 𝑨 = 𝒂0	𝒂6⋯𝒂. ∈ ℝ$×. and 

similar for 𝑩 ∈ ℝ&×. and 𝑪 ∈ ℝ'×., then the CP 

decomposition can be expressed as 

𝑿(0) = 𝑨 𝑪⊙ 𝑩 > + 𝑬(0) (7) 

or 

𝑿 6 = 𝑩 𝑪⊙ 𝑨 > + 𝑬(6) (8) 

or 

𝑿(@) = 𝑪 𝑩⊙ 𝑨 > + 𝑬(@) (9) 

where 𝑨,𝑩, 𝑪 are called the loading matrices for the three 

modes respectively and 𝑨⊙ 𝑩 represents the Khatri-Rao 

product of matrix 𝑨 and 𝑩. 

B. Computation of CP decomposition and the ALS algorithm 

Suppose we want to find the best rank 𝑅 approximation of 

𝓧 ∈ ℝ$×&×' via 

min
𝓧

𝓧−𝓧 + 	𝑔(𝓧) (10) 

where  𝓧 = 𝜆* 	𝒂* ∘ 𝒃* ∘ 𝒄*
.
*/0 , 𝜆* represents the scale of 

component 𝑟, 𝑔 𝓧 = 𝜇0	𝑔0 𝑨 + 𝜇6	𝑔6 𝑩 + 𝜇@	𝑔@(𝑪) is a 

data-dependent regularizer with (𝜇0, 𝜇6, 𝜇@) the corresponding 

regularization parameters. The ALS algorithm solves this 

problem in an iterative fashion. We first solve for 𝑨 with 𝑩 and 

𝑪 fixed, then solve for 𝑩 with 𝑨 and 𝑪 fixed, and so on. This 

procedure is repeated until some convergence criterion is 

satisfied. Note that each sub-problem reduces to an ordinary 

least square problem. Specifically, let’s assume 𝑩 and 𝑪 are 

fixed and we are solving for 𝑨. Using the equivalent matrix 

expression discussed above, we can write the optimization 

problem as 

𝑨 = argmin
𝐀

𝑿 0 − 𝑨 𝑪⊙ 𝑩 >

N
+ 𝜇0	𝑔0(𝑨) (11) 

The solution with 𝜇0 = 0 (without regularization) reduces to a 

regular least square solution: 

𝑨 = 𝑿(0) 𝑪⊙ 𝑩 > P (12) 

where 𝒀P is the Moore-Penrose pseudo inverse of 𝒀. Using a 

property of the Khatri-Rao product [4], we can rewrite as 

𝑨 = 𝑿(0) 𝑪⨀𝑩 𝑪>𝑪 ∗ 𝑩>𝑩 P (13) 

where 𝑨 ∗ 𝑩 represents the Hadamard product of matrix 𝑨 and 

𝑩. This expression is almost always preferable to (12) because 

it achieves a much lower computational complexity by only 

calculating the pseudo-inverse of an 𝑅×𝑅 matrix. Finally, we 

normalize each component and store the norm in 𝝀 to avoid 

scale ambiguity. For the case 𝜇0 ≠ 0, the solution in (12) is 

replaced by the solution to (11), which will be closed form if 

𝑔0(𝑨) is quadratic, but may require iterative solution in other 

cases. The full ALS algorithm is shown in Algorithm I. 

ALGORITHM I: CP-ALS 

Algorithm CP-ALS (𝓧, 𝑅, {𝑨∗, 𝑩∗, 𝑪∗, 𝝀∗})	

			⋆Initialize 𝑨 ∈ ℝ$×. , 𝑩 ∈ ℝ&×. , 𝑪 ∈ ℝ'×. , 𝝀 ∈ ℝ. 

While not converged
†
 

 𝑨 ← argmin
𝐀

𝑿 0 − 𝑨 𝑪⊙ 𝑩 >

N
+ 𝜇0	𝑔0(𝑨) 

 𝑩 ← argmin
𝐁

𝑿 6 − 𝑩 𝑪⊙ 𝑨 >

N
+ 𝜇6	𝑔6(𝑩)  

 𝑪 ← argmin
𝐂

𝑿 @ − 𝑪 𝑩⊙ 𝑨 >

N
+ 𝜇@	𝑔@(𝑪)  

  Normalize 𝑨,𝑩, 𝑪 and store the norms in 𝝀 

End While 

Return 𝑨,𝑩, 𝑪 and 𝝀 

End Algorithm 

	⋆ The initialization is typically performed using either random matrices or the 

𝑅 leading singular vectors of the matricized 𝓧. We define specific 

initializations below for our SRSCPD algorithm.   

† Algorithm convergence is determined when the sum of the 𝑙0 norm of the 

difference between two adjacent iterations in all modes is less than some small 

constant, e.g. 10^_. 

III. METHODS 

Eckart and Young [17] showed that the best rank-𝑟 

approximation of a matrix with respect to the Frobenius norm 

is given by the leading 𝑟 factors of the SVD. This is not the case 

for CP decomposition of a higher-order tensor. Kolda et al. [18] 

showed an example where the best rank-1 approximation is not 

part of the best rank-2 approximation of a tensor. As a result, 

all components in the CP decomposition for a given desired 

rank have to be found simultaneously. 

The determination of tensor rank is NP-hard [19]. Many 

metrics have been proposed to help us find the correct rank, e.g. 

the core consistency diagnostic (CORCONDIA) [20], 

difference in fit (DIFFIT) [21] and automatic relevance 

determination (ARD) [22]. However, all these metrics require a 

set of decomposition results for all ranks up to the maximum 

rank 𝑅. Obtaining such a set of solutions using CP 

decomposition is quadratically (𝑂 𝑅6 ) more complex than 

finding a rank-1 approximation. This represents a significant 

challenge to use of higher rank tensor models and was a primary 

motivation for our development of the SRSCPD framework. 

The SRSCPD framework is built on the original ALS 

algorithm. Our goal is to compute a rank-recursive set of 
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decompositions from rank 1 to rank 𝑅. Our approach uses the 

result for rank 𝑟 to initialize the decomposition for rank 𝑟 + 1. 

Initialization for the additional component is found by fitting a 

rank one tensor to the residual from the rank 𝑟 fit. While this is 

a relatively straightforward approach, it has not previously been 

described and the “warm start” greatly improves the 

convergence speed of the ALS algorithm relative to alternatives 

as well as helps to avoid local minima in this non-convex 

optimization problem. As a result, we are able to address the 

problems with robustness and scalability for large-scale 

datasets. 

The full SRSCPD framework is shown in Algorithm II, for a 

three-order tensor example. The inputs of the algorithm are a 

tensor 𝓧 ∈ ℝ$×&×' and the desired maximum rank 𝑅. For each 

iteration 𝑟, a rank-𝑟 approximation is calculated using the 

original CP-ALS algorithm with initializations {𝑨∗, 𝑩∗, 𝑪∗, 𝝀∗}. 

The initializations are formed by concatenating the solutions 

{𝑨*^0, 𝑩*^0, 𝑪*^0, 𝝀*^0} from the previous (𝑟 − 1) recursion 

with the rank-1 approximation {𝒂a, 𝒃a, 𝒄a, 𝜆a} of the residue 

tensor 𝓧*bc, where 𝓧*bc is obtained by subtracting the 

reconstructed tensor using {𝑨*^0, 𝑩*^0, 𝑪*^0, 𝝀*^0} from the 

original data tensor 𝓧. 

SRSCPD is flexible in the sense that techniques that has been 

proposed to improve the ALS algorithm can be directly 

incorporated. For example, one can add a line search at the end 

of each major iteration of ALS. Moreover, data-dependent 

constraints and regularization terms can be applied to each of 

the ALS sub-problems, e.g. non-negativity, sparsity, and 

smoothness. 

ALGORITHM II: SRSCP-ALS 

Algorithm SRSCP-ALS (𝓧, 𝑅) 

 𝒂0, 𝒃0, 𝒄0, 𝜆0 ← CP-ALS (𝓧, 1) 

 𝓧*bc ← 𝓧− Tensor_Recon (𝒂0, 𝒃0, 𝒄0, 𝜆0) 

 𝒂a, 𝒃a, 𝒄a, 𝜆a ← CP-ALS (𝓧*bc, 1) 

 𝑨∗ ← [𝒂0	𝒂a]; 𝑩∗ ← [𝒃0	𝒃a]; 𝑪∗ ← [𝒄0	𝒄a]; 𝝀∗ ←
𝜆0

𝜆a
 

 For 𝑟 = 2, 3, … , 𝑅 

  𝑨* , 𝑩* , 𝑪* , 𝝀* ← CP-ALS (𝓧, 𝑟, {𝑨∗, 𝑩∗, 𝑪∗, 𝝀∗}) 

  𝓧*bc ← 𝓧− Tensor_Recon (𝑨* , 𝑩* , 𝑪* , 𝝀*) 

  𝒂a, 𝒃a, 𝒄a, 𝜆a ← CP-ALS (𝓧*bc, 1) 

 𝑨∗ ← [𝑨* 	𝒂a]; 𝑩∗ ← [𝑩* 	𝒃a]; 𝑪∗ ← [𝑪* 	𝒄a]; 𝝀∗ ←
𝝀*

𝜆a
 

 End For 

Return a set of solutions 

𝒂0, 𝒃0, 𝒄0, 𝜆0 , 𝑨6, 𝑩6, 𝑪6, 𝝀6 , … , {𝑨. , 𝑩. , 𝑪. , 𝝀.} 

End Algorithm 

IV. EXPERIMENT AND RESULTS 

We simulated stereotactic EEG data [23] with 100 channels, 

200 Hz sampling rate, 2 second duration. We assume that there 

are 𝑅 true underlying networks or components.  In each 

network, spatially, a total of 𝑁 channels are co-activated, where 

𝑁 is chosen randomly between 2 and 10. Temporally, we 

assume the network is either “on” or “off”, in an interleaved 

manner that forms a block activation pattern. The number of 

activated blocks is selected randomly between 2 and 5 and both 

the minimum block length and the minimum interval between 

any adjacent activated blocks are set to be 0.1 second. 

Spectrally, the true signals in each network are sinusoidal with 

frequencies chosen randomly between 10 and 80 Hz. Finally, 

we add white Gaussian noise to the simulated data with a range 

of signal to noise ratios (𝑆𝑁𝑅𝑠). 

The order-three tensor 𝓧 is generated by calculating the 

power of the Morlet wavelet transform (MWT) of the simulated 

data matrix with center frequency 1 Hz and a time-frequency 

index of two in a linearly spaced frequency range of 1 to 100 

Hz with interval 1 Hz. Thus, the final tensor 𝓧 has the 

dimensions of ℝ$×&×', where 𝐼 = 100, 𝐽 = 400, 𝐾 = 100. An 

example of the model used to simulate the data is shown in Fig. 

 
Figure 1: An example of the simulated data with 5 components. Each 

component is represented by a distinct color in all three modes. (a) The channel 

(spatial) mode shows the activated channels that participate in each network; 

(b) The time (temporal) mode shows the block activation pattern for each 

network; (c) The spectrum (spectral) mode shows the frequency spectrum for 

each network. 
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1. Note that overlaps between components may occur in any of 

the three modes. 

We first compared the robustness of the decomposition using 

the SRSCPD framework against ALS using 1, 2 and 5 randomly 

selected initializations. The same convergence criterion was 

used for both algorithms and in all cases we computed solutions 

from rank 1 to R. In both algorithms we used a non-negativity 

constraints on all modes, because the power of Morlet wavelet 

coefficients are naturally non-negative and the constraint helps 

avoid degeneracy [24]. Let 𝑨 ∈ ℝ$×., 𝑩 ∈ ℝ&×., 𝑪 ∈ ℝ'×. be 

the loading matrix in each of the three modes as described in 

Section II. Then in each sub-problem of the ALS, we used the 

following cost function for 𝑨 (likewise for 𝑩 and 𝑪) 

𝑨 = argmin
𝐀

𝑿 0 − 𝑨 𝑪⊙ 𝑩 >

N
	𝑠. 𝑡. 𝑨 ≽ 0 (14) 

where “≽” denotes the element-wise inequality. 

Since we know the ground truth under the simulated settings, 

we assessed the quality of the solutions using the averaged 

congruence product [25]. Let 𝑨,𝑩, 𝑪 be the column-wise 

normalized ground truth loading matrices and 𝑨,𝑩, 𝑪 their 

estimated counterparts. Then the averaged congruence product 

is defined as 

𝐴𝐶𝑃 = max
𝐏
tr((𝑨>𝑨 ∗ 𝑩>𝑩 ∗ 𝑪>𝑪)	𝑷) (15) 

where 𝑷 is a permutation matrix accounting for the ambiguity 

of the ordering of the solutions [26] and tr(𝑿) indicates the 

trace of 𝑿.  

We evaluated the ACP of the solutions obtained from both 

ALS and SRSCPD as a function of 𝑅 for 𝑆𝑁𝑅 = 10. For each 

𝑅, we ran 100 Monte Carlo trials and boxplots of ACP were 

generated. For each simulated tensor, we repeated ALS 𝑀 

times, where 𝑀 = 1, 2,	and 5, each time using a different 

random initialization. The final solution was selected as that 

which has the lowest cost. We also recorded the computational 

cost for each of the methods. We also repeated the above study, 

but instead of varying 𝑅 we conducted the experiment as a 

function of 𝑆𝑁𝑅 with 𝑅 = 5. 

Fig. 2 shows performance of ALS vs SRSCPD as a function   

of rank 𝑅. For small 𝑅 all results are similar. However, for 

larger we see that the ALS results are strongly dependent on 

initialization, that performance for 𝑅𝐼 = 5 is significantly better 

than for 𝑅𝐼 = 3 and 𝑅𝐼 = 1. SRSCPD benefits from using the 

results of the lower rank as an initialization, resulting in overall 

improved performance relative to all three versions of ALS. 

Fig. 3 shows the computation cost as a function of 𝑅. As 

expected, the ratios among the ALS methods are approximately 

proportional to 𝑅𝐼, the number of different initializations. The 

cost of SRSCPD is significantly lower than that for ALS, 𝑅𝐼 =

3 and 5. As the rank increases, the cost for SRSCPD is even 

lower than ALS without restart. The reason for this is that the 

initialization with the result from the lower rank, not only 

produces improved performance (Fig. 2) but also faster 

convergence of the ALS sub-problems.  

Fig. 4 shows that as the SNR increases, ACP also improves 

for all methods. SRSCPD shows generally similar performance 

to ALS with 𝑅𝐼 = 5 restarts and is significantly better than 

results for 𝑅𝐼 = 1. However, for lower SNRs, performance of 

ALS with 𝑅𝐼 = 5 restarts is superior to SRSCPD. 

V. CONCLUSION 

Identification of dynamic functional connectivity in single 

subjects in resting-brain data is a difficult problem due to low 

SNR and the spatio-temporal complexity of the data. 

Traditional sliding window-based correlation approaches 

cannot achieve optimality in both temporal resolution and 

robustness of the estimation of the correlation. On the other 

hand, PCA- or ICA-based methods impose orthogonality or 

 
Figure 3: Simulation results. Boxplots of the run time in seconds over 100 Monte 

Carlo trials are shown as a function of 𝑅. “#RI” denotes the number of random 
initializations when using original ALS algorithm. 

 
Figure 4: Simulation results.  Boxplots of the ACP over 100 Monte Carlo trials 

are shown as a function of SNR. “#RI” denotes the number of random 

initializations when using the original ALS algorithm. 

 
Figure 2: Simulation results.  Boxplots of ACP over 100 Monte Carlo trials are 

shown as a function of 𝑅. “#RI” denotes the number of random initializations 
when using original ALS algorithm. 
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independence constraints on the data, which may be 

inconsistent with the underlying physiological processes that 

govern network dynamics. 

In this paper, we have described a SRSCPD framework based 

on the original ALS algorithm, aiming at robustly identifying 

dynamic functional connectivity using a tensor decomposition. 

This framework is scalable to large datasets due to its use of a 

warm start of the optimization problem for each tensor rank. 

Using simulations, we have shown that SRSCPD consistently 

outperforms the multi-start ALS algorithm over a range of ranks 

and SNRs, with lower computation cost. 
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