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ABSTRACT

Non-local means (NLM) filtering of fMRI can reduce noise

while preserving spatial structure. We have developed a vari-

ant called temporal-NLM (tNLM) which uses similarity in

time-series between voxels as the basis for computing the

weights in the filter. Using tNLM, dynamic fMRI data can be

denoised while spatial boundaries between functionally dis-

tinct areas in the brain tend to be preserved. The degree of

smoothing in tNLM is determined by a parameter h. Here

we describe a procedure for selection of h to optimize our

ability to differentiate functionally discrete brain regions. We

demonstrate the method in application to optimized filtering

of task fMRI data.

Index Terms— Optimization, non-local means, fMRI,

networks

1. INTRODUCTION

Dynamic functional MRI indirectly reflects neuronal activ-

ity by measuring blood-oxygen level dependent (BOLD)

changes in image contract. Strong temporal correlations are

evident in these data between physiologically related cor-

tical regions, even during periods of rest [1]. Quantifying

correlations between multiple brain areas forms the basis for

brain network identification from resting fMRI [2]. While

the role and analysis of task fMRI are quite different, the

BOLD time-series in these data will similarly show strong

correlations within and between regions that respond to a

particularly cognitive challenge [3].

BOLD-related contrast changes are small and noise in the

data limit our ability to reliably identify regions of sponta-

neous or task-related activity. Both resting and task-related

fMRI are typically spatially filtered to reduce noise, in addi-

tion to other preprocessing steps. Even after extensive pre-

processing, identification of brain networks from correlation

patterns in resting fMRI and identification of active regions

using a generalized linear model (GLM) in task fMRI can

still be challenging.

Spatial smoothing is applied to the fMRI data either vol-

umetrically with 3D isotropic Gaussian kernel [4], or on data

mapped onto a 2D representation of the cortical surface using
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the Laplace-Beltrami operator [5]. Both methods suffer from

the common problem that in addition to reducing noise, they

also inevitably spatially mix signals between adjacent regions

of functional specialization.

Recently, non-local means (NLM) filtering has been ap-

plied for structural-preserving denoising of anatomical MRI

[6], [7], fMRI [8], [9] and diffusion MRI [10]. All of these

applications compute the NLM kernels based on spatial simi-

larity measures similar to that in the paper that originally de-

scribed this approach [11]. Recently we described a variant

on NLM that filters spatio-temporal data based on measures

of similarity in the time series rather than spatial similarity

[12]. We refer to this as temporal NLM (tNLM) and demon-

strated its effectiveness in denoising of resting fMRI data. By

filtering based on temporal similarity, tNLM will reduce noise

by averaging over regions in the image that have similar func-

tional roles without blurring across functional boundaries be-

tween regions with distinct temporal activity.

Performance of tNLM is dependent on a parameter h that

determines the form of the mapping from temporal correla-

tion to the filter kernel weights. Too small a choice will cause

inadequate smoothing and less SNR improvement. On the

other hand, too large a value will result in over-smoothing

and blurring between functional regions. Buades et al. [11]

empirically suggested setting h = 10×σ, where σ is the stan-

dard deviation of the noise. In application to MRI, Manjn et

al. [6] exhaustively searched the parameter space and found

h = 1.2× σ to be the best choice. Since the optimal h is not

only a function of the noise level, but also a function of the

block size over which filtering is performed, Coupé et al. [7]

developed a method for selecting h automatically by normal-

izing the l2 distance and estimating the noise variance. They

found that an optimal choice of h =
√
2βσ̂, where β is a

manually-tuned constant. None of these approach extends di-

rectly to tNLM where the temporal nature of the data needs to

be accounted for. Further these methods are not optimal for

the key application considered here: preservation of discrete

functional regions while also reducing noise.

Here we describe a new approach to selecting the tNLM

parameter h to optimize differentiation of regions that are

functionally connected from those that are not. We describe

the approach below and present evaluation based on simulated

and experimental task fMRI data.
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2. METHODS

2.1. Temporal NLM Filtering

We apply tNLM filtering to fMRI data defined on the vertices

of a tessellated representation of the mid-cortical surface. Let

s(i, t) be the time series data at vertex i and time t. Let N (i)
denote the set that contains i and all of its k-hop neighbors.

Then tNLM filtering is defined as

s′(i, t) =
1

∑

j∈N (i) w(i, j)

∑

j∈N (i)

s(j, t)w(i, j) (1)

where w(i, j) is the weight applied when averaging across

vertices. This weight depends on a temporal measure of sim-

ilarity, which we define as

w(i, j) = exp





−
1
T

∥

∥

∥

∥

~s(i)

||~s(i)|| −
~s(j)

||~s(j)||

∥

∥

∥

∥

2

h2



 (2)

where ~s(i) = [s(i, 1), . . . , s(i, T )]⊤ is the vector representa-

tion of the time series at vertex i with length T and h is the

scalar parameter that controls the degree of smoothing. As

noted in [12], the distance 1
T
‖~s(i)/||~s(i)|| − ~s(j)/||~s(j)‖2

between any pair of vertices in (2) can be expressed as

2− 2× r̂(~s(i), ~s(j)) where r̂ is the sample correlation coef-

ficient between ~s(i) and ~s(j).
We can rewrite tNLM filtering in matrix form. Let X ∈

R
N×T be the data matrix with N vertices and T time samples.

Then the weighting matrix W can be expressed as

W (i, j) =







exp

(

−2(1−A(i, j))

h2

)

, j ∈ N (i)

0 , j 6∈ N (i)
(3)

where A = XX⊤ ∈ R
N×N is the data correlation matrix.

We can further define the degree matrix D to be a diagonal

matrix whose diagonal element dii =
∑

j Wi,j . Then the

tNLM filtered signal Y can be written as

Y = D−1WX (4)

2.2. Optimization of tNLM Parameter h

The parameter h in tNLM filtering determines the degree of

noise reduction and smoothing. Here we focus on its appli-

cation to spatio-temporal fMRI data representing brain net-

works. Each network is made up of a number of discrete ar-

eas of functional specialization in the brain. We want to select

the parameter to maximize the SNR in the tNLM-filtered data

within each network but without mixing the signals between

them. To do this we assume that the matrix W = f(A) , equa-

tion (3), defines a graph with nodes representing the vertices

on the cerebral cortex and the edge strength between them

given by the elements of W . Our goal is to select h so that the

graph W optimally differentiates, in terms of edge strength,

between pairs of vertices in the same network, and pairs in

different networks. In this way the tNLM filter will lead to

improved SNR while minimizing mixing of signals between

distinct functional networks.

Let the observed signal be xi = si+ni, a superposition of

the true signal si and the noise ni at vertex i. Assume si and

ni are independent with si ∼ N (0, σ2
s) and ni ∼ N (0, σ2

n).
Further assume perfect correlation within each network (H1)

and zero between networks (H0) with respect to the true sig-

nal si. Then the correlation has the following form:

ρ =
E[xixj ]

σxi
σxj

=















0 , H0 :
E[sisj ]

σ2
s

= 0

σ2
s

σ2
s + σ2

n

, H1 :
E[sisj ]

σ2
s

= 1
(5)

where σxi
represents the standard deviation of xi. The sample

correlation r̂ will vary from this expected value according to

the distribution [13]

P (r̂) =
(M − 2)Γ(M − 1)(1− ρ2)

M−1

2 (1− r̂2)
M−4

2

√
2πΓ(M − 1

2 )(1− ρr̂)M− 3

2

×2 F1(
1

2
,
1

2
,
2M − 1

2
,
ρr + 1

2
)

(6)

where M is the number of samples and 2F1(a, b; c; z) is the

Gaussian hypergeometric function.

An example of the distribution of the elements of corre-

lation matrix A, for cases with (red curve) and without (blue

curve) correlation are shown in Fig. 1. For large M and small

ρ, cases typical in fMRI, we can approximate these distribu-

tions as normal.

Fig. 1. The distribution of the elements of the correlation

matrix A for zero true correlation (blue) and 0.2 correlation

(red), with the kernel function in (2) evaluated for different

values of the parameter h.

To optimally differentiate connections within and be-
tween networks, we select h to maximize the expected value
of W (i, j) for H1 and minimize it for H0. To account for
different frequencies of occurrence of H0 and H1, we weight
these expected values by their respective probabilities P (H0)
and P (H1). To achieve this we solve the optimization prob-
lem

ĥ=argmax
h

E[w(r, h)|H1]P (H1)−E[w(r, h)|H0]P (H0)

=argmax
h

∫
1

−1

w(r, h)PH1
(r)drP (H1)−

∫
1

−1

w(r, h)PH0
(r)drP (H0)

=argmax
h

∫
1

−1

w(r, h)(P (H1)PH1
(r)−P (H0)PH0

(r))dr (7)
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where w(r, h) = exp(−2(1− r)/h2). P (H1) and P (H0) are

the relative frequencies of H1 and H0 with PH1
(r) and

PH0
(r). For illustration, we have overlaid the function

w(r, h) for several values of h on the sample correlation

distributions in Fig. 1. Note that to solve (7) we must first

learn the pdfs. We do this by fitting a bimodal Gaussian

mixture model (GMM) to the correlation data in A, rather

than using the precise form in (6). We then use a directed

line search to find the optimal h. This then determines the

mapping W = f(A) which is used in turn to generate the

filtered data according to equation (4). We summarize our

algorithm as follows:

Algorithm 1 Optimal Selection of h

1: Compute the correlation matrix A = XX⊤

2: Fit a bimodal GMM to elements of A using an EM algo-

rithm to find PH1
(r), P (H1), PH0

(r), P (H0)

3: Find the optimal ĥ by solving equation (7) using PH1
(r),

P (H1), PH0
(r), P (H0) obtained from the GMM

2.3. Performance Evaluation

2.3.1. Simulation

We simulated data matrix X with K = 5 networks and 100
vertices in each network, T = 80 time samples and SNR =
σ2
s/σ

2
n = 0.25. These parameters were chosen so the distribu-

tion of the data in the correlation matrix A from the simulated

data visually matched that for our fMRI data. The neighbor-

hood N (i) was chosen to be the entire set of vertices. The op-

timal h was obtained by running Algorithm 1 for 1000 Monte

Carlo trials. The value of the cost function in (7) was then

evaluated as a function of h for each of the trials as shown in

Fig. 2, which yielded an average optimal value of h = 0.49
(±.03 s.d.)

Fig. 2. Cost function in equation (7) evaluated as a function

of h under the simulation settings. The light gray curves are

1000 individual Monte Corlo trials, the blue curve is the mean

and the two red curves are one standard deviation away from

the mean for each h.

To evaluate the impact of different values of h on identi-

fying networks, we generated the filtered data Y according to

(4), and used the correlation matrix C = Y Y ⊤ to partition the

data into 5 networks using a normalized cut algorithm [14].

We then computed a performance measure using the Adjusted

Rand Index (ARI) [15] between the resulting network labels

and the ground truth. Finally, we plotted the ARIs as a func-

tion of h in Fig. 3. The value that actually produced the high-

est ARI, averaged over 1000 trials, was h = 0.52 (±.06 s.d.),

compared to the average optimal value h = 0.49 (±.03 s.d.)

selected by our algorithm.

Fig. 3. ARI metric of the clustering results evaluated as a

function of h under the simulation settings. The colors of

curves have the same meaning as those in Fig. 2.

2.3.2. Task fMRI Data

Our earlier application of tNLM was to resting fMRI [12],

here we focus on filtering of task fMRI. To evaluate perfor-

mance we used a single subject minimally processed task

fMRI data set from the Human Connectome Project (HCP)

[16]. The minimal preprocessing pipeline for HCP task fMRI

data is described in [16], [17]. We briefly summarized here:

fMRI data were acquired with TR = 720ms, TE = 33.1ms,

2× 2× 2 mm voxels with two independent sessions. Acqui-

sition artifacts including head motion and spatial distortion

were corrected and the data were co-registered with the T1

structural image and resampled onto the 32K-vertex cortical

surface.

We applied tNLM to two data sets: the Language Pro-

cessing (LP) task and the Social Cognition (SC) task [16],

[18]. We evaluated performance as described below using the

contrast of “Story” vs rest for LP and “Random” Interaction

vs rest for SC because these two contrasts showed activated

adjacent functional areas, allowing us to evaluate whether

optimal-tNLM is able to preserve the separation of these

areas after filtering.

Fig. 4. Cost function in equation (7) evaluated as a function of

h for the Language Processing (LP) task (blue) and the Social

Cognition (SC) task (red), respectively.

To evaluate the efficacy of our approach, the LP and SC
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fMRI data were processed separately to find the optimal h for

tNLM filtering and analyzed as described below. To achieve

computational tractability, the cortical surface was downsam-

pled to 11K vertices prior to filtering. We used the data from

the right hemisphere only to obtain the optimal h based on

Algorithm 1 for LP (h = 0.43) and SC (h = 0.45) separately.

The value of the cost function in (7) was also evaluated as a

function of h as shown in Fig. 4 for the two tasks.

Fig. 5. Combined representative z-score maps (α = 0.05) for

“Story” contrast in LP (orange) and “Random” contrast in SC

(blue). ROI for analysis containing activated regions in both

contrasts is indicated in superior temporal gyrus.

Each data set was filtered using tNLM (with the neigh-

borhood chosen as the 11-hop neighbors for each vertex i, as

in [12]) for multiple different values of the parameter h. For

comparison the data was also isotropically smoothed with

FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL) for multiple

different values of the full-width-half-maximum (FWHM)

parameter s of the Gaussian smoothing kernel. We then ap-

plied FSL’s level 1 and level 2 analyses, which fits a GLM

to the data [16]. As a result of this processing, we ob-

tained a vertex-wise cortical map of z-scores for the “Story”

and “Random” contrasts for multiple levels of Gaussian and

tNLM smoothing. The z maps were thresholded for two

different uncorrected α levels (0.02, 0.05). The uncorrected

values were used as we were interested in exploring consis-

tency of and differences in smoothing results across different

α levels over all vertices.

Based on a visual comparison of results for the two tasks,

we selected an ROI in the superior temporal gyrus of the

right hemisphere, which contains adjacent regions of activa-

tion from the two tasks as shown in Fig. 5. Let Rs denote the

region within the ROI exceeding the α-threshold for “Story”

and Rr its counterpart for “Random”. We computed the mean

z-score over the entire ROI vs the Dice coefficient between

Rs and Rr as a function of both h and s and for two different

α values. The results are shown in Fig. 6. We can conclude

from these figures that

1. For isotropic linear smoothing: with increased smooth-

ing the average z-score (reflecting strength of response)

increases along with the Dice coefficient. Thus, filter-

ing will help detection of activation (increased z-score)

but at the expense of blurring (increased Dice coeffi-

cient) between the two distinct but adjacent functional

areas.

2. For tNLM smoothing, with increased levels of smooth-

ing there is a range over which the average z-score in-

creases without a corresponding increase in Dice coef-

ficient. This indicates improved ability to detect activa-

tion, but now without blurring between functional re-

gions. At a certain point, there is a knee in the curves at

which point the Dice coefficient starts increasing while

the mean z-score actually starts decreasing. The part

of the curve above the knee indicates poor performance

of tNLM because the value of h is too large causing

blurring between the adjacent functional areas.

3. Interestingly, the knee in the tNLM curves was found

to be 0.45 which matches well the optimal values

found using equation (7) for LP (h = 0.43) and SC

(h = 0.45). This represents the value which produces

the maximum value of average z-score within the ROI

without producing any significant increase in Dice co-

efficient or equivalently, blurring between functional

areas.

4. We found this result consistent for multiple α levels

ranging from 0.05 to 0.01. Space limitations only al-

low us to show two in Fig. 6

Fig. 6. Mean z score vs Dice’s coefficient for different

smoothing parameters and different α levels. The red curve

represents the result under tNLM smoothing and the blue

curve represents the result under isotropic smoothing. The

parameter values for h and s are annotated above the curves.

3. DISCUSSION

The optimization-based method developed in this paper pro-

vides a means of systematically selecting the parameter for

tNLM filtering when used as a preprocessing step for ana-

lyzing task-based or resting fMRI. The simulation produced

a value of h close to that which optimized performance

in terms of network identification when compared against

ground truth. For experimental task fMRI, the optimal value

coincided with the point at which we achieved maximum

enhancement in SNR without blurring between distinct func-

tional regions. In this work we assumed a specific form of

the kernel. Further improvements may be gained by kernel-

learning methods.
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