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ABSTRACT 

Characterizing functional brain connectivity using resting 

fMRI is challenging due to the relatively small BOLD signal 

contrast and low SNR. Gaussian filtering tends to undermine 

the individual differences detected by analysis of BOLD 

signal by smoothing signals across boundaries of different 

functional areas. Temporal non-local means (tNLM) filtering 

denoises fMRI data while preserving spatial structures but the 

kernel and parameters for tNLM filter need to be chosen 

carefully in order to achieve optimal results.  Global PDF-

based tNLM filtering (GPDF) is a new, data-dependent 

optimized kernel function for tNLM filtering which enables 

us to perform global filtering with improved noise reduction 

effects without blurring adjacent functional regions.
 
 

Index Terms— non-local means, filtering, optimization, 

fMRI, connectivity 

1. INTRODUCTION 

Functional MRI (fMRI) is a powerful in-vivo neuroimaging 

tool that allows us to indirectly infer information about the 

neuronal activity of the brain by observing blood-oxygen 

level dependent (BOLD) signal fluctuations [1]. Temporal 

correlations in resting fMRI (rfMRI) BOLD signals across 

multiple spatially distinct brain regions are used to define 

functional brain networks  [2]. However, BOLD signals 

inherently have low signal to noise ratio (SNR). 

Preprocessing of fMRI data often includes a spatial 

smoothing step to reduce noise. Isotropic 3D Gaussian 

filtering is the most commonly used approach to smooth 

volumetric rfMRI data [3], or equivalently, the Laplace-

Beltrami (LB) operator is applied when the data is mapped 

onto a 2D representation of the cortical surface [4]. Both 

methods suffer from a critical common problem as they both 

spatially mix signals between adjacent functional regions, 

limiting our ability to accurately identify connectivity at the 

micro-to-meso scale in individual fMRI recordings. 

Non-local means (NLM) filtering is an edge-preserving 

method originally designed for natural image denoising [5] 

and has been adapted to filter anatomical MRI [6], fMRI [7] 

and diffusion MRI [8] to preserve spatial structures in 

imaging data. Our laboratory recently developed a variant for 

filtering rfMRI data called temporal NLM (tNLM) that 

assigns non-local smoothing kernel weights based on 

temporal similarities between time series rather than spatial 

similarities [9]. We demonstrated tNLM filtering’s ability to 
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reduce noise by using (weighted) averages of only those 

times series that are similar, thus minimizing blurring across 

functional boundaries. 

Here we identify two key challenges in using tNLM 

filtering as described in [9]. The first of these is that the 

exponential kernel function used in computing the weights is 

chosen heuristically. The exponent is an affine function of the 

sample correlation between the two time-series. As we show 

below, this function does not perform well in terms of 

optimizing the trade-off between using large weights when 

the correlations are large and smaller (or near zero) weights 

for low correlations. A second issue is that almost all NLM-

based filtering methods, including tNLM, have been applied 

over a restricted neighborhood around the point to be filtered, 

partially because of the high computational cost if they are 

applied globally. However, since networks span the entire 

brain, global rather than local filtering has the potential for 

improved results when filtering using tNLM. It has been 

suggested previously that the brain has the structure of a 

small-world network [10] and therefore most “nodes” (or 

voxels) in the brain are not strongly correlated with each other. 

As a result, when filtering a particular node using data from 

the entire brain, the fraction of uncorrelated nodes is much 

larger than the portion of correlated nodes. This can result in 

an undue influence of the large number of uncorrelated nodes 

on the filtered signal if the filter weights applied to these 

nodes are not sufficiently suppressed. We address each of 

these issue in the method described below.  

Here we propose Global PDF-based tNLM filtering 

(GPDF): a new kernel function for tNLM filtering of fMRI 

data based on the probability density function (PDF) of the 

correlation of the time series between pairs of voxels. This 

method enables us to perform global filtering with improved 

noise reduction effects while minimizing blurring of adjacent 

functional regions.  

2. METHODS 

2.1 NLM-based Filtering and tNLM 

Let’s assume the fMRI data are represented on a 2D 

tessellation of the mid-cortical surface with 𝑉 vertices and 𝑇 

time samples per vertex. Let 𝑠(𝑖, 𝑡)  be the time series at 

vertex 𝑖 ∈ 𝑉 and time 𝑡 ∈ 𝑇. Let 𝑆+ be the set of vertices that 

are used to compute the filtered signal at vertex 𝑖 . In the 

tNLM method, 𝑆+  contains vertex 𝑖  and all its 𝑘 -hop 

neighboring vertices, for some 𝑘 > 0. Then tNLM filtering is 

defined as 
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𝑠/ 𝑖, 𝑡 =
1

𝑤(𝑖, 𝑗)4∈56

𝑠 𝑗, 𝑡 𝑤(𝑖, 𝑗)
4∈56

 (1) 

where the weight 𝑤(𝑖, 𝑗) is chosen to be a temporal similarity 

measure and defined as a function of the correlation [9]: 
𝑤 𝑖, 𝑗 = 𝑓(𝑟 𝑖, 𝑗 ; ℎ) (2) 

𝑓tNLM 𝑟; ℎ = exp −
2 1 − 𝑟

ℎD
 (3) 

where 𝑟(𝑖, 𝑗) is the Pearson correlation coefficient between 

vertices 𝑖  and 𝑗  and ℎ  is the parameter which controls the 

degree of filtering. 

2.2 Global PDF-based tNLM Filtering (GPDF) 

Our GPDF filtering differs from the original tNLM filtering 

in the following two ways: (i) the spatial range over which 

the filtered signal is computed: in GPDF the set 𝑆+ = 𝑆, ∀𝑖, 
where 𝑆	contains all vertices on the tessellated brain surface 

instead of just a local neighborhood; (ii) we use a different 

kernel function 𝑓 in equation (2). 

2.2.1 GPDF Kernel Formulation 

Let the observed signal be 𝑥+ = 𝑠+ + 𝑛+  at vertex 𝑖 , a 

superposition of the true signal 𝑠+ and noise 𝑛+. Assume that 

𝑠+  and 𝑛+  are independent with 𝑠+ ∼ 𝑁(0, 𝜎M
D)  and 𝑛+ ∼

𝑁(0, 𝜎N
D). Also assume some non-zero correlation between 𝑠+ 

and 𝑠4 if 𝑖 and 𝑗 are within the same functional network (𝐻P) 

and zero correlation if they are in different networks (𝐻Q). 

Then the correlation between two observed signals is in the 

form of: 

𝜌+4 =
𝐸 𝑥+𝑥4
𝜎T6𝜎TU

=
𝐸 𝑠+𝑠4
𝜎M
D + 𝜎N

D =

								0							, 𝐻Q: 𝐸 𝑠+𝑠4 = 0

𝜎M
D𝑐

𝜎M
D + 𝜎N

D 	 , 𝐻P:
𝐸 𝑠+𝑠4
𝜎M
D = 𝑐

 (4) 

where 𝑐 ∈ 	 [−1,0)	⋃	(0,1]  represents some non-zero 

correlation and 𝜎T6 represents the standard deviation of 𝑥+. To 

further help avoid numerical issues and improve the 

robustness of the algorithm described below, we formulate 

our hypothesis in a slightly relaxed form: 

𝜌+4 =
𝐸 𝑥+𝑥4
𝜎T6𝜎TU

∈
											 −𝛿, 𝛿 											, 𝐻Q
		 −1, −𝛿 ⋃ 𝛿, 1 		, 𝐻P

 (5) 

where 𝛿 is a small positive constant. The sample correlation 

distribution is given by the following [11] 

𝑃 𝑟|𝜌; 𝑇 =
𝑇 − 2 𝛤 𝑇 − 1 1 − 𝜌D

_`P
D 1 − 𝑟D

_`a
D

2𝜋𝛤 𝑇 −
1
2 1 − 𝜌𝑟 c`

d
D	

  

×	 𝐹P(
1

2
,
1

2
,
2𝑇 − 1

2
,
𝜌𝑟 + 1

2
)D  (6) 

where 𝑇 is the number of samples and 𝐹PD (𝑎, 𝑏; 𝑐; 𝑧) is the 

Gaussian hypergeometric function. The parameter 𝑇 will be 

omitted in the following derivation as for a given fMRI 

dataset, 𝑇 is a fixed scalar. 

An example is shown in Fig. 1 where 𝜌 = 0.2 under 𝐻P 

(blue curve) and 𝜌 = 0 under 𝐻Q (red curve). The histograms 

of the sample correlations are distributed about their means 

according to (6) due to the finite number of samples. This 

causes a significant overlap between the red and blue curves. 

There is therefore a range of nonzero correlation values over 

which it is difficult to distinguish 𝐻P  from 𝐻Q  given an 

observed sample correlation 𝑟.  But to perform well, tNLM 

should attach large weights only to those time series for 

which 𝐻P is true.  

In Fig. 1 we show the shape of the original tNLM kernel 

defined in (3) as a function of ℎ. The figure shows that the 

kernel performs a poor job in differentiating 𝐻P from 𝐻Q, in 

the sense that applying significant weights for 𝐻P also results 

in weights significantly greater than zero for  𝐻Q. The black 

curve shows an alternative kernel that, visually at least, does 

a better job of giving significantly larger weights to 𝐻P while 

minimizing those for 𝐻Q. We now describe how we select this 

kernel and then evaluate its performance. 

Bayes theorem tells us the posterior probability of 𝜌 

given 𝑟 is 

𝑃 𝜌 𝑟 =
𝑃 𝑟 𝜌 𝑃 𝜌

∫ 𝑃 𝑟 𝜌 𝑃 𝜌 𝑑𝜌
 (7) 

To better differentiate 𝐻P from 𝐻Q, we take the ratio between 

the integrated posterior probability under 𝐻P  and the 

counterpart under 𝐻Q, forming the Bayes factor [12] 

𝑅 𝑟 =
𝑃 𝑟 𝜌 𝑃 𝜌 𝑑𝜌

n∈op

𝑃 𝑟 𝜌 𝑃 𝜌 𝑑𝜌
n∈oq

 (8) 

where 𝑅 𝑟 ∈ 	 [0,∞) . The larger 𝑅 𝑟 , the more likely 𝜌 

belongs to 𝐻P given that sample correlation 𝑟. 

We then reformulate our kernel function 𝑓 to be 

𝑓GPDF 𝑟; ℎ = 1 − exp −
𝑅(𝑟)

ℎD
 (9) 

where, similar to the tNLM kernel in equation (3), ℎ  is a 

parameter that controls the degree of smoothing. Replacing 

the sample correlation in (3) with the Bayes factor in (8) 

introduces the strong nonlinearity visible in the black curve 

in Fig. 1. This nonlinearity accounts for the fact that the 

posterior probability of 𝐻P  vs 𝐻Q  can change rapidly as a 

function of 𝑟, as reflected in the Bayes factors.  

2.2.2 Automated Parameter Selection 

In addition to using a different kernel, we also propose an 

automated method for selecting the parameter ℎ.	 To do this 

we maximize the expected value of the weighting function 

𝑓GPDF(𝑤; ℎ) under 𝐻P while controlling the mean value with 

respect to 𝐻Q. Specifically, 

ℎ = argmax
z

𝐸op{𝑓 𝑟; ℎ },  s.t.  𝐸oq 𝑓 𝑟; ℎ ≤ 𝛼 (10) 

where 𝛼 is the expected weight under 𝐻Q, analogous to the 

false positive rate in detection theory. Although 𝛼 is another 

parameter we need to tune manually, it is much more 

meaningful and robust than ℎ, because choosing the same 𝛼 

 
Figure 1: The histogram of the correlations under 𝐻P(blue) and 𝐻Q 

(red) generated from simulated data overlaid with tNLM kernel 

functions for different parameter ℎ  (dotted) and GPDF kernel 

function (black solid). 
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will generally yield similar filtering result while the internal 

parameter ℎ  can have very different impact for different 

datasets, as a function of the noise level, range of correlation 

values and size of the image being filtered. We recommend 

that 𝛼 be set conservatively, e.g. 10`d or smaller, due to the 

dominant volume of uncorrelated vertices in an fMRI dataset. 

2.2.3 Estimation of the Population Correlation Distribution 

In order to construct the kernel function in equation (9) we 

need to know the Bayes factor 𝑅 𝑟 , which requires the 

conditional distribution 𝑃 𝑟 𝜌  and the population 

correlation distribution 𝑃 𝜌 . The sample correlation density 

𝑃 𝑟 𝜌  has an analytical solution given in equation (6). 

Therefore, we need only to estimate 𝑃 𝜌 . Let 𝑃(𝑟) be the 

empirical sample correlation distribution obtained from the 

fMRI data. Let 𝑃′ 𝑟 ∈ ℝc , 𝑃′ 𝑟 𝜌 ∈ ℝc×�  and 𝑃′ 𝜌 ∈
ℝ� be the discretized version of the corresponding variables 

in the continuous space, respectively. Then 𝑃′ 𝜌  can be 

estimated using a linear regression with non-negative 

constraints.  

𝑃′(𝜌) = argmin
��(n)

𝑃/ 𝑟 − 𝑃/ 𝑟 𝜌 𝑃′ 𝜌n ��

D
, s.t. 𝑃/ 𝜌 ≽ 0 (11) 

This optimization is a well-posed problem as long as 𝑀 ≥ 𝑁, 

i.e. the discretization step for 𝜌  is smaller than that for 𝑟 , 

which can be achieved easily. Also, this problem can be 

solved efficiently using the non-negative least square method. 

2.2.4 GPDF Filtering Algorithm 

We summarize our GPDF filtering algorithm as follows: 

1. Given fMRI data 𝑋 ∈ ℝ�×_ , calculate the correlation 

matrix 𝐴 = 𝑋𝑋_ ∈ ℝ�×�. 

2. Estimate 𝑃/ 𝑟  from the histogram of the elements of 𝐴. 

3. Estimate the priors by solving equation (11) 

4. Optimize the parameter ℎ by solving equation (10) 

5. Construct the kernel using equation (9) 

6. Finally filter the signal using equation (1) 

3. EXPERIMENTS AND RESULTS 

3.1 Simulation 

We simulated the tessellation of the brain surface with 2D 

blocks of size 𝑉×𝑉  (𝑉 = 32 ) representing left and right 

hemispheres. Each point in each block represents a vertex on 

the brain surface and has a label, indicating which network it 

belongs to. Fig. 2 (a) shows the ground truth label blocks 

where each color represents a distinct label. The top and 

bottom rows have identical labels to simulate connections 

between the right and left hemispheres (in total 𝐾 = 16 

unique labels). For each label, we generated a random time 

series (white noise) of length 𝑇 = 200 where points within 

the same labels were given identical time series (perfectly 

correlated) in the absence of noise. Points with different 

labels were given zero correlation indicating that they belong 

to different networks. We then added Gaussian white noise 

with 𝑆𝑁𝑅 = 0.4 to the entire dataset. 

To investigate the effects of different filtering methods, 

we applied filtering to the simulated data then parcellated the 

data into 𝐾  labels using normalized cuts (Ncuts) [13]. A 

stable matching algorithm [14] was applied to match labels 

between different results for easy comparison. Figure 2 

displays the parcellation results for: (b) Gaussian filtering 

with full-width-half-maximum (FWHM) approximately 8 

points; (c), (d) tNLM filtering with optimized ℎ parameter 

[15]; (e), (f) PDF filtering. To demonstrate the difference 

between local filtering and global filtering, we applied tNLM 

and PDF both locally ((c) and (e)) and globally ((d) and (f)).  

Local filtering processed left and right hemispheres 

separately while global filtering processed them jointly.   

Gaussian spatial filtering generated labels along the 

boundaries between true labels not seen in the ground truth. 

This is most likely due to blurring of uncorrelated, 

neighboring vertices. In contrast, both tNLM and PDF 

filtering methods preserved the blocky structures. However, 

PDF yielded much cleaner results than tNLM because tNLM 

has a larger contribution from the uncorrelated vertices at 

each filtered point in order to assign higher weights to the 

correlated points, as discussed above. Note that for both PDF 

and tNLM the parameter ℎ	had been optimized,  in the latter 

case using [15], to achieve the best trade-off.  Finally, for both 

tNLM and PDF, local filtering resulted in labels that were 

mismatched between the left and right hemispheres. The 

myopic perspective of local filtering failed to detect the distal 

inter-hemispheric connections. 

We also ran this simulation for 100 Monte Carlo trials 

and calculated the Adjusted Rand Index (ARI) [16] between 

each parcellation result and the ground truth as a filtering 

performance measure. Results showed that the medians of the 

ARIs were 0.547, 0.701, 0.760, 0.750, 0.969 respectively in 

correspondence to each filtering method in Fig. 2 (b) – (f), 

respectively, indicating that GPDF outperformed other 

filtering methods by a significant margin.  

3.2 Application to rfMRI Dataset 

3.2.1 Dataset and Filtering 

40 subjects with minimally preprocessed rfMRI datasets (2 

sessions, 2 phase encodings; 160 sessions total) were 

obtained from Human Connectome Project (HCP) [17]. The 

data were acquired with TR=720ms with resolution 2×2×2 

mm and had been carefully preprocessed using the pipeline 

described in [18]. Then the data were co-registered onto a 

common atlas and downsampled onto a 32K-vertex cortical 

surface. We further downsampled each data to 11K vertices 

for computational tractability. 

We then filtered each dataset using LB with 𝜎 = 2mm 

and GPDF with 𝛼 = 10`d . We did not include tNLM 

filtering results here because tNLM had been extensively 

 
Figure 2: Parcellation result of simulated data represented as a 𝑉×𝑉 

matrix for each method and each hemisphere. Columns from (a) to 

(f) are indicated by their titles along upper row. The rows represent 

the two hemispheres. 
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studied and compared with LB on real datasets in [9] and 

[15].  

3.2.2 Seeded Correlation Map 

To qualitatively evaluate the effects of filtering, we used a 

seed point in the pre-cuneus which is part of the default mode 

network (DMN) (Fig. 3 (d)) and calculated its correlation 

with all other vertices of the brain, forming a correlation map. 

Fig. 3 shows seed-point correlation maps for a single subject 

for (a) unfiltered data; (b) LB filtered data and (c) GPDF 

filtered data in a common scale ranging from −0.2 to 1.  

While low correlations were observed across the brain in 

unfiltered data due to rfMRI’s inherent low SNR, positive 

correlations with the regions of the DMN were observed. 

Figure 3 (d) exaggerates the color scale of unfiltered data for 

easy visualization of these spatial structures. LB and GPDF, 

in contrast, yielded higher correlations due to their ability to 

reduce noise and amplify signal. However, GPDF exhibited 

a wider range and stronger correlation values than LB. 

Additionally, GPDF appears better able to preserves 

spatial structures between adjacent ROIs (functional regions) 

with opposite correlation values to the seed point. The 

boundary between two adjacent functional regions are 

indicated by the arrows in Fig. 3. This boundary is observed 

in both unfiltered data and GPDF but not in LB. These 

observations are indicative of LB’s tendency to spatially blur 

the boundaries between adjacent ROIs. 

LB showed strong connections to the local points 

surrounding the seed point while connections to distal areas, 

especially inter-hemispherical connections, were strongly 

attenuated due to the localness of the filtering. This 

attenuation did not occur in GPDF as strong correlations are 

preserved across distal and inter-hemispheric regions of the 

DMN. GPDF therefore appears to help reveal stronger intra-

network connectivity than the LB filtering method. 

3.2.3 Unfiltered Correlation Matrix and Modularity 

To further quantitatively evaluate the filtering performance, 

for each dataset we took the unfiltered data and computed the 

vertex-pairwise full correlation matrix, 𝐴 ∈ ℝ�×�  and 

binarized it with threshold 𝑡ℎ  to form a binary adjacency 

matrix 𝐴’. We also applied the Ncuts algorithm to parcellate 

the brain into 𝐾 networks using each of the following: the 

unfiltered data, the LB-filtered data and the PDF-filtered data. 

We then calculated the modularity [19] for the adjacency 

matrix 𝐴’  using each of the three 𝐾  network partitions 

(unfiltered, LB, PDF) as a function of threshold 𝑡ℎ. Using the 

same unfiltered data adjacency 𝐴’  establishes an unbiased 

comparison of the three partitions. The resulting modularity 

measure indicates how well each filtering method grouped 

the data into functionally homogeneous regions with respect 

to the original (unfiltered) data. In essence, we assume that a 

better filtering method will give us a better clustering of the 

nodes under a given parcellation algorithm, in the sense that 

nodes that have the same labels (are within the same network) 

tend to have higher and consistent correlation with each other 

than with nodes in other networks. 

The analyses above were performed on each dataset 

independently. Fig. 4 shows the median modularity across 

160 sessions (40 subjects x 4 sessions) as a function of the 

threshold 𝑡ℎ. The GPDF filtering method outperformed LB 

and the unfiltered case by a large margin regardless of the 

threshold settings and the number of parcels, indicating that 

GPDF is producing parcellations that show stronger within 

network similarity in the raw (unfiltered) data than either 

unfiltered data or LB filtering. It also worths noting that LB 

filtering actually performs worse than the unfiltered case 

when performing individual parcellations, suggesting that LB 

may not optimally preserve differences between individuals 

based on a single fMRI recording. 

4. CONCLUSION 

In this paper, we developed a novel kernel function for global 

tNLM filtering. We have demonstrated qualitatively and 

quantitatively that this method can perform better denoising 

than standard linear filtering method when the filtering is 

performed for the purposes of network identification. The 

approach may be particularly useful when inferring 

connectivity patterns from individual fMRI recordings. 

Extensions of this method to explore dynamic functional 

connectivity is a promising future direction. 

 
Figure 3: Seeded correlation map for a single subject for (a) unfiltered data; (b) LB filtered data; (c) GPDF filtered data; (d) unfiltered data 

re-plotted in its own scale. Seed point was selected in the caudal pre-cuneus area shown as a black dot in the bottom right sub-figure of (d). 

Positively correlated regions are shown in red, uncorrelated regions in white and negatively correlated regions in blue. 

 
Figure 4: Modularity (y-axis) as a function of threshold value (x-

axis) for unfiltered parcellation result (black), LB filtered (blue) and 

GPDF filtered (red). Different number of parcels 𝐾 are shown with 

different markers: circle for 𝐾 = 10 , x-mark for 𝐾 = 20  and 

pentagram for 𝐾 = 100. 
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