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Introduction 

Correlation-based Functional connectivity (FC) can  identify coherent brain activity across distributed and 

reproducible brain networks1. Dynamic FC identifies evolving changes in FC in response to intrinsic (e.g., 

network interactions) or extrinsic (e.g., task-related) factors. The most commonly used approaches for 

decoding dynamic FC are the sliding-window-based and ICA-based methods2. However, the former tends 

to over-smooth temporal dynamics and the latter requires either spatial or temporal independence, which 

may not be realistic as brain networks can overlap and be correlated in both space and time3. Recently, we 

developed a scalable and robust tensor-based sequential canonical polyadic decomposition (SRSCPD) 

framework4 for dynamic FC identification in EEG that avoids these limitations. Here we combine this 

approach with the BrainSync5 algorithm, which uses a time-domain orthogonal transform to synchronize 

resting and asynchronous task fMRI across subjects. We then use SRSCPD to identify common networks, 

and their associated dynamics, across subjects by computing a group tensor decomposition from 

asynchronously acquired task fMRI data. 

Methods 

We used motor task fMRI (tfMRI) data for 40 healthy subjects from the Human Connectome Project (HCP)6, 

with two sessions per subject with opposite phase encoding directions, resulting in S = 80 tfMRI sessions. 

Subjects were presented with visual cues to tap fingers, squeeze toes, or move their tongue7. Each block of 

movement lasts 12 seconds and is preceded by a 3-second cue. Timing varies across subjects and sessions. 

The tfMRI data were downsampled onto a V ≈ 11K surface tessellation where each vertex has a time series 

with T = 284 samples. Using BrainSync, we synchronized time series from all other 79 sessions to the first 

session and stacked them together to form a tensor cube of size 𝒳 ∈ ℝV×T×S . Finally, we performed 

SRSCPD4 on 𝒳 to compute a tensor decomposition with a maximum desired rank of R = 5 and a non-

negativity constraint only on the session mode. 

Results 

Fig. 1 shows all 5 components obtained from SRSCPD in (a) – (e). The first 3 columns show the spatial, 

temporal (overlaid with the task design blocks for the reference subject) and subject/session mode for each 

component, respectively. The last column shows the Welch power spectral density (PSD) of the temporal 

mode. 

• For all 5 components, the subject/session modes are roughly uniform across all sessions, indicating 

approximately equal participation from all subjects. 

• The temporal dynamics of both component (a) and (c) show clear peaks at the beginning of each task 

block, which is well aligned with the (delayed) cues. Spatially, (a) shows a clear fronto-parietal 
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attentional control network8 and (c) shows a clear response in visual areas, which reflects the subjects’ 
responses to the cues. 

• Component (b) corresponds to the default mode network (DMN) which is also a task-negative network9. 

Indeed, a strong negative correlation with the cues can be directly observed from the temporal mode. 

• Component (d) has a relatively fast (~0.3 Hz in PSD), global (spatial mode) and non-task-related 

(temporal mode) activity, suggesting that it may represent a residual respiration component common 

across all subjects. 

• Component (e) reveals a clear tongue response. Corresponding networks for foot and mouth were not 

found in this decomposition.  

Conclusion 

Using SRSCPD with BrainSync, we identified changes in dynamic FC across 5 networks, 4 task-related 

and one corresponding to physiological noise in tfMRI data. Critically, although these networks were 

identified without using any prior information with regard to task designs, our results not only replicated 

the task design, but also demonstrated expected differences in the onset/offset of the DMN, visual, fronto-

parietal and motor (tongue) networks. Further work is needed to elucidate higher order models, including 

the hand and foot motor networks.  
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