
TBME-01704-2017.R1 

Abstract—Objective: Identification of networks from resting 

brain signals is an important step in understanding the dynamics 

of spontaneous brain activity. We approach this problem using a 

tensor-based model. Methods: We develop a rank-recursive 

Scalable and Robust Sequential Canonical Polyadic 

Decomposition (SRSCPD) framework to decompose a tensor into 

several rank-1 components. Robustness and scalability are 

achieved using a warm start for each rank based on the results 

from the previous rank. Results: In simulations we show that 

SRSCPD consistently outperforms the multi-start alternating 

least square (ALS) algorithm over a range of ranks and signal-to-

noise ratios (SNRs), with lower computation cost. When applying 

SRSCPD to resting in-vivo stereotactic EEG (SEEG) data from 

two subjects with epilepsy, we found components corresponding 

to default mode and motor networks in both subjects. These 

components were also highly consistent within subject between 

two sessions recorded several hours apart. Similar components 

were not obtained using the conventional ALS algorithm. 

Conclusion: Consistent brain networks and their dynamic 

behaviors were identified from resting SEEG data using 

SRSCPD. Significance: SRSCPD is scalable to large datasets and 

therefore a promising tool for identification of brain networks in 

long recordings from single subjects. 

Index Terms—Tensor decomposition, dynamic functional 

connectivity, stereotactic EEG, optimization  

I. INTRODUCTION 

XPLORING functional connectivity (FC) in resting brain 

signals is a rich approach to studying brain networks [1]. 

Of particular recent interest is the dynamic nature of FC [2]. 

The most commonly used strategy for decoding dynamic FC 

(DFC) is to compute correlation or coherence using a sliding 

window [3], [4]. However, using a long temporal window to 

obtain robust FC estimates inevitably leads to over-smoothing 

of dynamic changes [5], [6]. To overcome this difficulty, 

principal component analysis (PCA)-based and independent 

component analysis (ICA)-based approaches have been 

proposed. Although they do not introduce temporal 

smoothing, a limitation of those methods is that either the time 

series of each network is required to be independent (temporal 

ICA) [7] or the spatial modes of the networks are disjoint 

(spatial ICA) [8], [9] or orthogonal (PCA) [10], whereas real 
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networks can overlap and be correlated in both space and time 

[11]. 

Tensors are a generalization of matrices in which we can 

represent data with more than two indices. For example, here 

we use a third-order tensor to represent SEEG data in terms of 

space, time and frequency (in the following “tensors” refers to 

tensors of order 3 or higher). As with matrices, tensors can be 

represented as a sum of rank-1 components. Structured data 

often then admit to low rank models with respect to this tensor 

representation. One of the two popular tensor models is the 

canonical polyadic (CP) form [12], which has been shown 

[13]–[15] to also be equivalent to parallel factors analysis 

(PARAFAC) [16] and the canonical decomposition 

(CANDECOMP) [17]. 

CP is a model that can capture structure inherent in 

multidimensional data when represented in a low rank tensor 

of order 3 or higher. Conversely, standard 2D matrix 

decomposition methods, such as PCA or ICA, applied to 

matricized or unfolded tensors [15] are typically not able to 

capture this structure using a similar low-rank model. 

Moreover, CP decomposition has a unique solution under less 

restrictive conditions than the orthogonality or independence 

assumptions implicit in PCA or ICA [18], [19]. This latter 

property is particularly appealing when analyzing SEEG or 

other brain data that can be represented as a third or higher-

order tensor, since we can avoid the restrictive assumptions of 

orthogonality or independence between components. 

Among the many algorithms for computing the CP 

decomposition, alternating least squares (ALS), [16][17] is the 

most widely used because of its simplicity relative to 

alternatives [14], [15], [20], [21]. Comparisons in these papers 

show that, in general, ALS provides solutions of similar 

quality to other algorithms. While some are more robust to 

over-factoring than ALS, especially in ill-conditioned cases, 

the expense is higher computational complexity in both 

memory and time [15]. 

ALS-based CP decomposition has been widely used in EEG 

analysis by transforming the raw EEG recordings to a time-

frequency representation using short-time Fourier or Morlet 

wavelet transforms and applying a 3-way CP decomposition 

(channel by time by frequency) [22]. Möck [23] applied CP to 

event-related potentials (ERP). Miwakeichi et al. [24] 

analyzed both spontaneous and evoked EEG recordings and 

showed that theta activity was predominant during a task 

condition, while alpha activity was observed continuously 

during both rest and task conditions. CP decomposition has 

also been applied to ictal EEG recordings from patients with 
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epilepsy. The extracted components have been used to localize 

the seizure onset zone [25]–[27] as well as to remove artifacts 

[25], [26]. When applied to group data analysis, CP 

decomposition and the extracted components/features can be 

used for a variety of purposes: classification [28], cross-

modality comparison [29], and hypothesis testing [30]. 

The application of CP decomposition to functional MRI 

(fMRI) data has also been explored, usually at the group-level 

with the goal of finding common factors among subjects [14]. 

Individual analysis using CP is rarely performed because 

fMRI data lacks the rich spectral information present in EEG 

data. Andersen et al. [31] applied CP decomposition to finger-

tapping fMRI data. Beckmann et al. [32] proposed a variation 

of CP which extends probabilistic independent component 

analysis (PICA) to higher orders by adding an independence 

constraint in the spatial dimension. While originally applied to 

task fMRI data, Damoiseaux et al. [33] applied tensor-PICA to 

resting fMRI data and identified 10 networks consistent with 

previous findings. 

In previous studies where CP decomposition was applied to 

either EEG or fMRI data [24]–[29], [31], [32], [34], [35], the 

size of the datasets is relatively small (the largest dimension 

has an order of 10! elements or less). To explore dynamic 

functional connectivity, especially large-scale dynamics, we 

need to explore much larger datasets. There are two issues that 

have limited studies of this kind: scalability and robustness. 

Scalability: The majority of the studies cited above either 

truncate the data into short temporal segments (e.g. in EEG 

ictal and event related potential recordings) or heavily down-

sample the data in the spatial domain (e.g. in fMRI studies) or 

sometimes both. The degrees of freedom (DOF), 

approximately reflected by the largest dimension in the CP 

model for a typical 10-minute SEEG recording used in our 

experiments is larger (≥ 10") than in these previous studies. 

Moreover, as we will show in Section II below, the 

computational complexity increases approximately 

quadratically as the DOF increase when using ALS to estimate 

rank. Additionally, to achieve similar quality of solutions 

relative to our algorithm, ALS has to be applied with multi-

start as shown in Section III, resulting in an even higher 

complexity. Therefore, in order to compute CP 

decompositions on data of this size, a fast and efficient 

algorithm is required. 

Robustness (against local minima): It is well known that the 

ALS algorithm on a CP model is not guaranteed to converge 

to a global minimum or a stationary point, even when multi-

start is applied during the optimization [14], [15]. The local 

minimum problem becomes more severe as the number of 

components increases. Performance is further compromised 

when a larger number of components than necessary are fit to 

the data (over-factoring), resulting in splitting rank-1 

components into two or more factors. 

Several techniques have been explored to improve the 

robustness and efficiency of the ALS algorithm. For example, 

Rajih et al. [36] added a line search after each major ALS 

iteration. Navasca et al. [37] applied Tikhonov regularization 

on each sub-problem in ALS iteration. However, similar to the 

ALS alternatives reviewed above, these modifications result in 

significantly higher computation cost limiting their practical 

utility, particularly for large scale problems. 

In 2D matrix scenarios, Haldar et al. [38] proposed an 

incremented-rank PowerFactorization (IRPF) approach to 

solve minimum-rank matrix recovery problems, where higher-

rank solutions were obtained recursively using lower-rank 

results as warm initializations, resulting in a substantially 

improved performance compared to the standard convex 

optimization approach. Performance was also theoretically 

characterized later in [39]. In this work, we extend IRPF to 

higher-order tensors, with the goal of resolving the scalability 

and robustness issues discussed above. We refer to our 

approach as “scalable and robust sequential CP 

decomposition” (SRSCPD). As we show below, this algorithm 

is more robust than ALS and can be extended to large-scale 

problems. An outline of the remainder of the paper is as 

follows. Section II will briefly summarize the notation that 

will be used in later sections. Section III will describe the 

SRSCPD framework and the experimental design for both 

simulation and in-vivo data. Section IV will present the 

experiment results and conclusions follow in Section V. 

II. NOTATION AND PRELIMINARIES 

We first define some necessary notation and review the 

ALS algorithm which we use as part of our SRSCPD 

framework in section III. We largely follow the notational 

conventions and definitions of Kolda and Bader [14]. 

A. Scalar, Vector, Matrix and Tensor 

A scalar is denoted by a lowercase letter, e.g. 𝑥; a vector by 

a bold lowercase letter, e.g. 𝒙; a matrix by a bold uppercase 

letter, e.g. 𝑿; and a tensor by a bold script letter, e.g. 𝓧. The 

number of dimensions is called the order and each dimension 

is referred as a mode. We use a third-order tensor 𝓧 ∈ ℝ#×%×& 

in the following with individual elements denoted by 𝑥',),*. 

The notation and algorithms extend naturally to higher-order 

tensors. 

A rank-1 tensor can be expressed as the outer product of 

vectors. i.e. 𝓧 = 𝒂 ∘ 𝒃 ∘ 𝒄 where “∘” represents the vector 

outer product. We use the norm: 

‖𝓧‖ = 0111𝑥',),*+

&

*,-

%

),-

#

',-

 (1) 

B. Matricization 

Tensors can be unfolded or “matricized” into matrix form 

[14]. Matricization along dimension 𝑛 is denoted by 𝑿(/) so 

that a third-order tensor 𝓧 ∈ ℝ#×%×& can be matricized into 𝑿(-) ∈ ℝ#×%& or 𝑿(+) ∈ ℝ%×#& or 𝑿(1) ∈ ℝ&×#%. 

C. Kronecker, Khatri-Rao and Hadamard Product 

We use the definitions of the following matrix products 

defined in [14] and repeated here for convenience. The 

Kronecker product 𝑿⊗𝒀 of matrix 𝑿 ∈ ℝ#×% and 𝒀 ∈ ℝ&×2 

is defined as 
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𝑿⊗𝒀 = ⎣⎢⎢
⎡𝑥--𝒀 𝑥-+𝒀 ⋯ 𝑥-%𝒀𝑥+-𝒀 𝑥++𝒀 ⋯ 𝑥+%𝒀⋮								 ⋮ ⋱ ⋮𝑥#-𝒀 𝑥#+𝒀 ⋯ 𝑥#%𝒀⎦⎥⎥

⎤
 (2) 

where 𝑥') is the (𝑖,𝑗)-th element of 𝑿. 

The Khatri-Rao product 𝑿⊙𝒀 of matrix 𝑿 ∈ ℝ#×& and 𝒀 ∈ ℝ%×& is the column-wise Kronecker product of 𝑿 and 𝒀 𝑿⊙𝒀 = [𝒙-⊗𝒚- 𝒙+⊗𝒚+ ⋯ 𝒙& ⊗𝒚&] (3) 

where 𝒙' is the 𝑖-th column of 𝑿. 

The Hadamard product 𝑿 ∗ 𝒀 of matrix 𝑿 ∈ ℝ#×% and 𝒀 ∈ℝ#×% is the element-wise matrix product 

𝑿 ∗ 𝒀 = ⎣⎢⎢
⎡𝑥--𝑦-- 𝑥-+𝑦-+ ⋯ 𝑥-%𝑦-%𝑥+-𝑦+- 𝑥++𝑦++ ⋯ 𝑥+%𝑦+%⋮								 ⋮ ⋱ ⋮𝑥#-𝑦#- 𝑥#+𝑦#+ ⋯ 𝑥#%𝑦#% ⎦⎥⎥

⎤
. (4) 

 

In the following we use the property of the Khatri-Rao 

product [14]: (𝑿⊙ 𝒀)3 = (𝑿4𝑿 ∗ 𝒀4𝒀)3(𝑿⊙ 𝒀)4 (5) 

where 𝑿3 represents the Moore-Penrose pseudo-inverse of 𝑿 

D. CP Decomposition 

CP decomposes a tensor into a sum of rank-1 tensors or 

components. For a third-order tensor 𝓧 ∈ ℝ#×%×& 

𝓧 =1𝒂5 ∘ 𝒃5 ∘ 𝒄56

5,-

+ 𝓔 (6) 

where 𝒂5 ∈ ℝ#, 𝒃5 ∈ ℝ%, 𝒄5 ∈ ℝ&, 𝑅 is the rank or the 

number of components and 𝓔 is the error tensor. If we group 

the components in each mode into a matrix, i.e. let 𝑨 =[𝒂-	𝒂+⋯𝒂6] ∈ ℝ#×6 and similarly for 𝑩 ∈ ℝ%×6 and 𝑪 ∈ℝ&×6, then the CP decomposition can be expressed as [14] 𝑿(-) = 𝑨(𝑪⊙𝑩)4 + 𝑬(-) (7) 

or 𝑿(+) = 𝑩(𝑪⊙𝑨)4 + 𝑬(+) (8) 

or 𝑿(1) = 𝑪(𝑩⊙𝑨)4 + 𝑬(1) (9) 

where 𝑨,𝑩, 𝑪 are called the loading matrices for the three 

modes respectively. 

E. Computation of CP decomposition and the ALS algorithm 

Suppose we want to find the best rank 𝑅 approximation of 𝓧 ∈ ℝ#×%×& via min
𝓧8
T𝓧−𝓧VT + 	𝑔(𝓧V ) (10) 

where 𝓧V = ∑ 𝜆5	𝒂5 ∘ 𝒃5 ∘ 𝒄56
5,- , 𝜆5 represents the scale of 

component 𝑟 and 𝒂5, 𝒃5 and 𝒄5 have unit norm. 𝑔[𝓧V\ =𝜇-	𝑔-(𝑨) + 𝜇+	𝑔+(𝑩) + 𝜇1	𝑔1(𝑪) is a regularizing function 

with (𝜇-, 𝜇+, 𝜇1) the corresponding regularization parameters. 

The ALS algorithm solves this problem in an alternating 

fashion. We first solve for 𝑨 with 𝑩 and 𝑪 fixed, then solve 

for 𝑩 with 𝑨 and 𝑪 fixed, and so on. This procedure is 

repeated until some convergence criterion is satisfied. Note 

that, for quadratic regularizers, each sub-problem reduces to 

ordinary least square. Specifically, assume 𝑩 and 𝑪 are fixed 

and we are solving for 𝑨. Using the equivalent matrix 

expression discussed above, we can write the optimization 

problem as 𝑨V = argmin
𝐀

T𝑿(-) − 𝑨(𝑪⊙𝑩)4T
:
+ 𝜇-	𝑔-(𝑨) (11) 

The solution with 𝜇- = 0 (without regularization) reduces to a 

regular least square solution: 𝑨V = 𝑿(-)[(𝑪⊙𝑩)4]3 (12) 

Using the property in Eq. (5), we can rewrite as 𝑨V = 𝑿(-)(𝑪⨀𝑩)(𝑪4𝑪 ∗ 𝑩4𝑩)3 (13) 

This expression is almost always preferable to (12) because it 

achieves a much lower computational complexity by only 

calculating the pseudo-inverse of an 𝑅 × 𝑅 matrix. Finally, we 

normalize each component and set 𝜆5 equal to the 

normalization factor for the 𝑟th component, 𝑟 = 1,… , 𝑅. For 

the case 𝜇- ≠ 0, the solution in (12) is replaced by the solution 

to (11), which will be closed form if 𝑔-(𝑨) is quadratic but 

may require an iterative solution in other cases. The full ALS 

algorithm is shown in Algorithm I. 

 

ALGORITHM I: CP-ALS 

Algorithm CP-ALS (𝓧, 𝑅, {𝑨∗, 𝑩∗, 𝑪∗, 𝝀∗})	
			⋆Initialize 𝑨 ∈ ℝi×j , 𝑩 ∈ ℝk×j , 𝑪 ∈ ℝl×j , 𝝀 ∈ ℝj 

While not converged† 

 𝑨 ← argmin𝐀 T𝑿(o) −𝑨(𝑪⊙𝑩)pTq + 𝜇o	𝑔o(𝑨) 
 𝑩 ← argmin𝐁 T𝑿(s) −𝑩(𝑪⊙𝑨)pTq + 𝜇s	𝑔s(𝑩)  
 𝑪 ← argmin𝐂 T𝑿(u) − 𝑪(𝑩⊙𝑨)pTq + 𝜇u	𝑔u(𝑪)  
End While 

Normalize 𝑨,𝑩, 𝑪 such that each column has unit norm and set 𝜆v 

equal to the normalization factor for the 𝑟th component,	𝑟 = 1,… , 𝑅. 
Return 𝑨,𝑩, 𝑪 and 𝝀 

End Algorithm 	⋆ The initialization is typically performed using either random matrices or the 𝑅 leading singular vectors of the matricized 𝓧. We define specific 

initializations below for our SRSCPD algorithm. 

† Algorithm convergence is determined when the mean of the absolute 

difference of the loading matrices between two adjacent iterations over all 

modes is less than some small constant, e.g. 10wx. 

III. MATERIALS AND METHODS 

A. SRSCPD Framework 
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The best rank-𝑟 approximation of a matrix with respect to 

the Frobenius norm is given by the leading 𝑟 factors of the 

SVD. This is not the case for CP decomposition of a higher-

order tensor. Kolda [40] showed an example where the best 

rank-1 approximation is not part of the best rank-2 

approximation of a tensor. As a result, components in the CP 

decomposition for a given desired rank should be found 

simultaneously. Smilde et al. [41] (example 4.3) showed that 

the naïve sequential CP, in which a rank-1 tensor is fit to the 

residue at each iteration, failed to extract the correct 

components even when the data are known to be perfectly 

trilinear. Interestingly, this greedy sequential approach is still 

frequently used, simply because it is the most tractable 

approach to fitting tensor models to large datasets [42], [43]. 

The determination of tensor rank is NP-hard [44]. Many 

metrics have been proposed to help find the correct rank, e.g. 

the core consistency diagnostic (CORCONDIA) [45], 

difference in fit (DIFFIT) [46] and automatic relevance 

determination (ARD) [47]. All these metrics require a set of 

decomposition results for all ranks up to the maximum rank 𝑅. 

Obtaining such a set of solutions using CP decomposition is 

quadratically more complex than finding a rank-1 

approximation, as we need to compute the decompositions for 

each rank 𝑟 = 1, 2, … , 𝑅 separately (1 + 2 +⋯+ 𝑅 =𝑂(𝑅+)). This represents a significant challenge to use of 

higher rank tensor models and was the primary motivation for 

our development of the SRSCPD framework. 

The SRSCPD framework is built on the original ALS 

algorithm. Our goal is to compute a rank-recursive set of 

decompositions from rank 1 to rank 𝑅. Our approach uses the 

result for rank 𝑟 to initialize the decomposition for rank 𝑟 + 1. 

Initialization for the additional component is found by fitting a 

rank-1 tensor to the residual from the rank 𝑟 fit. In contrast, 

the original ALS algorithm does not use any information from 

rank	𝑟 when fitting a model of rank 𝑟 + 1. This “warm start” 

greatly improves convergence speed relative to the standard 

ALS algorithm except in very low rank cases (see simulation 

result in Fig. 4). The warm start may also help to avoid poor 

local minima in this non-convex optimization problem. As a 

result, we are able to address the problems with robustness and 

scalability for large-scale datasets. 

The full SRSCPD framework is shown in Algorithm II, for 

a third-order tensor example. The inputs of the algorithm are a 

tensor 𝓧 ∈ ℝ#×%×& and the desired maximum rank 𝑅. For 

each iteration 𝑟, a rank-𝑟 approximation is calculated using the 

original CP-ALS algorithm with initializations {𝑨∗, 𝑩∗, 𝑪∗, 𝝀∗}. 
The initializations are formed by concatenating the solutions {𝑨5=-, 𝑩5=-, 𝑪5=-, 𝝀5=-} from the previous iteration 𝑟 − 1 

with the rank-1 approximation {𝒂>, 𝒃>, 𝒄>, 𝜆>} of the residue 

tensor 𝓧5?@, where 𝓧5?@ is obtained by subtracting the 

reconstructed tensor using {𝑨5=-, 𝑩5=-, 𝑪5=-, 𝝀5=-} from the 

original data tensor 𝓧. 

SRSCPD is flexible in the sense that techniques that have 

been proposed to improve the ALS algorithm can be directly 

incorporated. For example, one can add a line search along the 

estimated gradient descend direction for each mode at the end 

of each major iteration of ALS [36]. Moreover, constraints and 

regularization terms can be applied to each of the ALS sub-

problems, e.g. non-negativity, sparsity, and smoothness. 

 

ALGORITHM II: SRSCPD-ALS 

Algorithm SRSCPD-ALS (𝓧, 𝑅) 

 𝒂o, 𝒃o, 𝒄o, 𝜆o ← CP-ALS (𝓧, 1) 

 𝓧v{| ← 𝓧− Tensor_Recon (𝒂o, 𝒃o, 𝒄o, 𝜆o) 

 𝒂}, 𝒃}, 𝒄}, 𝜆} ← CP-ALS (𝓧v{|, 1) 

 𝑨∗ ← [𝒂o	𝒂}]; 𝑩∗ ← [𝒃o	𝒃}]; 𝑪∗ ← [𝒄o	𝒄}]; 𝝀∗ ← ~𝜆o𝜆} � 
 For 𝑟 = 2, 3,… , 𝑅 

  𝑨v , 𝑩v , 𝑪v , 𝝀v ← CP-ALS (𝓧, 𝑟, {𝑨∗, 𝑩∗, 𝑪∗, 𝝀∗}) 
  𝓧v{| ← 𝓧− Tensor_Recon (𝑨v , 𝑩v , 𝑪v , 𝝀v) 

  𝒂}, 𝒃}, 𝒄}, 𝜆} ← CP-ALS (𝓧v{|, 1) 

 𝑨∗ ← [𝑨v	𝒂}]; 𝑩∗ ← [𝑩v	𝒃}]; 𝑪∗ ← [𝑪v	𝒄}]; 𝝀∗ ← ~𝝀v𝜆} � 
 End For 

Return a set of solutions {𝒂o, 𝒃o, 𝒄o, 𝜆o}, {𝑨s, 𝑩s, 𝑪s, 𝝀s}, … , {𝑨j , 𝑩j , 𝑪j , 𝝀j} 
End Algorithm 

B. Simulation 

We simulated SEEG data [48] with 100 channels, 200 Hz 

sampling rate, 2 second duration for ranks from 𝑅 = 1 to 10.  

In each component a total of 𝑁 channels were co-activated 

where 𝑁 was chosen randomly between 2 and 10. For each of 

the active channels for each component we generated a time 

series to represent a block activation pattern with the signal 

switching on and off, respectively, in active and inactive 

blocks. The number of active blocks over the 2-second period 

was selected randomly between 2 and 5 and both the 

minimum block length and the minimum interval between any 

adjacent activated blocks was set to 0.1 second. Within each 

active block, the signals in each component were unit 

amplitude sinusoids with frequencies chosen randomly 

 
Figure 1: An example of the simulated data with 5 components. Each component is represented by a distinct color in all three modes. From left to right: The 

channel (spatial) mode shows the activated channels that participate in each network; The time (temporal) mode shows the block activation pattern for each 

network; The spectral mode shows the Morlet wavelet frequency spectrum for each network. 

  

Authors' a
ccepted version

For re
search purpose only

Copyrig
ht (c

) IE
EE

Full a
rtic

le and cita
tio

n at

http
s://d

oi.o
rg/10.1109/TBME.2018.2875467



TBME-01704-2017.R1 

between 10 and 80 Hz. Finally, we added white Gaussian 

noise to the simulated data with a range of SNRs. 

The third-order tensor 𝓧 was generated by calculating the 

magnitude squared of the complex Morlet wavelet transform 

(MWT) coefficients of the simulated data matrix with center 

frequency 1 Hz, time resolution full-width-half-maximum 

(FWHM) of 2 seconds [49] in a linearly spaced frequency 

range from 1 to 100 Hz with interval 1 Hz. Thus, the final 

tensor 𝓧 has the dimensions of ℝ#×%×&, where 𝐼 = 100, 𝐽 =400, 𝐾 = 100. An example of the model used to simulate the 

data is shown in Fig. 1. Note that overlaps between 

components may occur in any of the three modes. 

We first compared the robustness of the decomposition 

using the SRSCPD framework against ALS using 1, 2 and 5 

random initializations (generated from a standard uniform 

distribution in the interval (0,1) using MATLAB (The 

MathWorks, Inc., Natick, MA, USA) function “rand”). The 

same convergence criterion was used for both algorithms and 

in all cases, we computed solutions from rank 1 to 𝑅. In both 

algorithms we used a non-negativity constraint on all loading 

matrices, because the squared magnitude of the wavelet 

coefficients are naturally non-negative and the constraint helps 

avoid degeneracy [50]. Let 𝑨 ∈ ℝ#×6, 𝑩 ∈ ℝ%×6, 𝑪 ∈ ℝ&×6 

be the loading matrix in each of the three modes as described 

in Section II. Then in each sub-problem of the ALS, we used 

the following cost function for 𝑨 (likewise for 𝑩 and 𝑪) 𝑨V = argmin
𝐀

T𝑿(-) − 𝑨(𝑪⊙𝑩)4T
:
	𝑠. 𝑡. 𝑨 ≽ 0 (14) 

where “≽” denotes the element-wise inequality. 

Since we know the ground truth under the simulated 

settings, we assessed the quality of the solutions using the 

averaged congruence product (ACP) [51]. ACP is a measure 

of correlations between components. Specifically, let 𝑨,𝑩, 𝑪 

be the column-wise normalized ground truth loading matrices 

and 𝑨V,𝑩V, 𝑪V their estimated counterparts. Then the ACP is 

defined per [51] as ACP = max
𝐏
tr((𝑨4𝑨V) ∗ (𝑩4𝑩V) ∗ (𝑪4𝑪V)	𝑷) (15) 

where 𝑷 is a permutation matrix accounting for the ambiguity 

of the ordering of the solutions [16] and tr(𝑿) indicates the 

trace of 𝑿. 

We evaluated the ACP of the solutions obtained from both 

ALS and SRSCPD as a function of 𝑅 for SNR = 10. For each 𝑅, we ran 100 Monte Carlo trials and boxplots of ACP were 

generated. For each simulated tensor, we repeated ALS 𝑀 

times, where 𝑀 = 1, 2,	and 5, each time using a different 

random initialization. The final solution was selected as that 

which has the lowest cost. We also box-plotted the Frobenius 

norm error as shown in Eq. 10 for each trial. Additionally, we 

recorded the run time for each of the methods. We then 

repeated the above study, but instead of varying 𝑅 we 

conducted the experiment as a function of SNR with 𝑅 = 5. 

C. Application to In-Vivo SEEG Dataset 

We performed retrospective analysis of patient data 

collected under an Institutional Review Board approved 

protocol for SEEG evaluation and monitoring in the Epilepsy 

Center, Cleveland Clinic, OH, USA. The SEEG evaluation 

performs invasive pre-surgical electrophysiological mapping 

for patients who have pharmaco-resistant focal epilepsy. For 

each patient, the implantation was performed using multi-lead 

depth electrodes, with each electrode comprising typically 10 

contacts spaced a few millimeters apart (AdTech, Racine, 

Wisconsin; Integra, Plainsboro, New Jersey; or PMT, 

Chanhassen, Minnesota). The electrode locations were 

determined after a multidisciplinary patient management 

conference where the hypotheses about the epileptogenic zone 

were drawn based on available noninvasive data: clinical 

history, video EEG, MRI, PET, ictal SPECT and MEG. The 

electrodes were implanted according to the Talairach 

stereotactic method using orthogonal or oblique trajectories 

[52]. The implantation schemes are shown in Table I. The 

SEEG signals were recorded using a common reference on a 

Nihon Kohden EEG system with a sampling rate of 1000 Hz. 

We chose two 10-minute data segments a minimum of 4 

hours apart (see Table I) for each patient. The segments were 

selected using annotated video of the patients for periods of 

physical inactivity (e.g. reading, watching TV). Using co- 

registration of the post-implant X-ray CT to the patients’ MR 

image, we selected the subset of the SEEG contacts that were 

in gray matter. 

For each data segment we applied the MWT with center 

frequency 1 Hz and time resolution FWHM of 2 seconds in a 

linearly spaced frequency range of 1 to 100 Hz with interval 1 

Hz. We computed the squared magnitude of the wavelet 

coefficients and temporally down-sampled the resulting 

envelope data in each frequency band by a factor of 5, 

resulting in a new envelope sampling rate of 200 Hz. We 

performed a flattening of the power spectrum to compensate 

for its “1/f” characteristics to emphasize the higher frequency 

components. The resulting data were then represented as a 

third-order tensor 𝓧 ∈ ℝ#×%×&, where 𝐼 is the number of 

channels (see Table I), 𝐽 = 120,000 is the number of time 

points and 𝐾 = 100 is the number of frequency bins. 

We applied SRSCPD to each tensor with three additional 

constraints: non-negativity on all three modes due to the non-

negative squared magnitude of the wavelet coefficients; a 

sparsity constraint on the spatial (channel) mode as we 

assumed that in each network only a small set of channels 

would be involved; and a smoothness constraint on the 

TABLE I: SUMMARY OF THE PATIENT DATA 

Subject ID 1 2 

# of 

Channels 
69 113 

Epilepsy 

Type 
Posterior cingulate epilepsy Left fronto-parietal 

Data 

Segment 

Time 

09:23:00 – 

09:33:00 

Same Day: 

13:22:02 – 

13:32:02 

21:50:30 – 

22:00:30 

Next Day: 

08:35:20 – 

08:45:20 

Implantation 

Scheme 
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spectral mode reflecting the limited frequency resolution of 

the MWT. Let 𝑨 ∈ ℝ#×6, 𝑩 ∈ ℝ%×6, 𝑪 ∈ ℝ&×6 be the loading 

matrices for each of the three modes. Then in the sub-

problems of the ALS, we use the following cost functions: 𝑨V = argmin
𝐀

T𝑿(-) − 𝑨(𝑪⊙𝑩)4T
:

+

+ 𝜇-1‖𝑨⋅'‖C�
'

, 𝑠. 𝑡. 𝑨 ≽ 0 
(16) 

 𝑩V = argmin
𝐁

T𝑿(+) −𝑩(𝑪⊙𝑨)4T
:

+ , 𝑠. 𝑡. 𝑩 ≽ 0 (17) 

 𝑪V = argmin
𝐂

T𝑿(1) − 𝑪(𝑩⊙𝑨)4T
:

+

+ 𝜇11‖∇𝑪⋅*‖C�+
*

	 , 𝑠. 𝑡. 𝑪 ≽ 0 
(18) 

where 𝑿⋅' denotes the 𝑖th column of 𝑿, 𝜇- and 𝜇1 are the 

regularization parameters which were set to 0.2 empirically. ‖⋅‖C� and ‖⋅‖C� denotes the 𝑙- norm and 𝑙+ norm respectively. ∇ is the finite difference operator on the columns of 𝑪. We 

solved each of the convex sub-problems (16) – (18) using 

Auslender and Teboulle’s single-projection algorithm [53] in 

the TFOCS toolbox [54]. 

Finally, the rank of the tensor was estimated based on the 

decomposition results using CORCONDIA [45]. This rank 

metric used the fact that the trilinearity of components starts 

decreasing in the case of over-factoring (the number of fitted 

components is greater than the actual rank). 

IV. RESULTS 

A. Simulation 

Fig. 2 shows performance of ALS vs SRSCPD as a function   

of rank 𝑅. For small 𝑅 all results are similar. However, for 

larger ranks we see that the ALS results are strongly 

dependent on initialization and that performance for 𝑀 = 5 is 

significantly better than for 𝑀 = 2 and 𝑀 = 1. SRSCPD 

benefits from using the results of the lower rank as an 

initialization, resulting in overall improved performance 

(higher median ACP) relative to all three versions of ALS. 

Fig. 3 shows the corresponding Frobenius norm error. As 

with Fig. 2, ALS with 𝑀 = 1 and 2 shows larger error than 𝑀 = 5, with the difference increasing with rank. In contrast to 

the ACP metric in Fig. 2, the error for ALS with 𝑀 = 5 in Fig. 

3 is very similar to that for SRSCPD and sometimes smaller 

for higher ranks. Closer examination of these results revealed 

that in cases where this occurs, ALS fails to find one or more 

of the weaker components that SRSCPD does find. Instead, 

part of the noise in the data is fit to one of the tensor 

components. This in turn leads to a lower squared error in the 

fit even though the extracted components are a poorer fit to the 

ground truth as measured with ACP.  

Fig. 4 shows the run time as a function of 𝑅 (the run time 

was measured using MATLAB with Dell Precision T3610 

computer, Intel Xeon E5-1650 v2 CPU). As expected, the 

 
Figure 4: Simulation results. Boxplots of the run time in seconds over 100 

Monte Carlo trials are shown as a function of 𝑅. 𝑀 denotes the number of 

random initializations when using original ALS algorithm. Top-left panel 

shows the zoomed-in results for a better comparison for lower rank data. 

 
Figure 5: Simulation results.  Boxplots of the ACP over 100 Monte Carlo 

trials are shown as a function of SNR. 𝑀 denotes the number of random 

initializations when using the original ALS algorithm. 

 
Figure 2: Simulation results.  Boxplots of ACP over 100 Monte Carlo trials 

are shown as a function of 𝑅. 𝑀 denotes the number of random initializations 

when using the original ALS algorithm. 

 
Figure 3: Simulation results.  Boxplots of the Frobenius norm error over 100 

Monte Carlo trials are shown as a function of 𝑅. 𝑀 denotes the number of 

random initializations when using the original ALS algorithm. 
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ratios of the run time among the ALS methods are 

approximately proportional to 𝑀, the number of different 

initializations. The cost of SRSCPD is significantly lower than 

that for ALS with 𝑀 = 2 and 5 restarts. As the rank increases 

(𝑅 > 4), the cost for SRSCPD is even lower than that for ALS 

without restart, 𝑀 = 1. The reason for this is that the warm 

start in SRSCPD produces a better initialization that not only 

results in improved performance (Fig. 2) but also faster 

convergence of the ALS sub-problems as shown in Fig. S1 in 

the supplemental material. 

Fig. 5 shows that as the SNR increases, ACP also improves 

for all methods. SRSCPD shows generally similar 

performance to ALS with 𝑀 = 5 restarts and is substantially 

better than results for 𝑀 = 1. However, for lower SNRs, the 

performance of ALS with 𝑀 = 5 restarts is superior to 

SRSCPD. 

B. In-Vivo SEEG Dataset 

1) Estimation of Rank 

Fig. 6 shows plots of the CORCONDIA rank metric as a 

function of 𝑅 for the two sessions for both subjects. Per 

recommendations in [45], rank should be chosen so that the 

CORCONDIA value is higher than 0.9. Based on the plots in 

 
Figure 6: CORCONDIA rank metric are shown as a function of rank 𝑅 for 

two sessions of both subjects. 

 
Figure 7: Two consistent components for Subject 1 show: (a) locations consistent with activity in the default mode network within the alpha band and (b) Motor 

activity in the beta frequency range. For each pair of consistent components, we show modes for session 1 in red and session 2 in blue in the top row. From left to 

right: The channel (spatial) mode shows the activated channels that participate in each network; The time (temporal) mode shows the dynamic variations of each 

network (only the first 10 seconds is shown for better visualization); The spectral mode shows the frequency-dependent component of the tensor. In the bottom 

row the left and middle sub-figures show the spatial distribution of the activated channels mapped onto the subject’s smoothed cortical surface. For visualization 

purposes, a contact or channel is defined as activated if the value of the (normalized) channel mode at that contact exceeds a threshold of 0.05 in both sessions. 

The right sub-figure shows the Welch power spectrum of the temporal mode. 
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Fig. 6, we selected 𝑅 = 3 and 4 for the two sessions of 

Subject 1 and 𝑅 = 5 and 3 for the two sessions of Subject 2. 

2) Intra-subject Network Comparison 

We found corresponding consistent components (CCs) 

across the two sessions as the pair of components that had the 

largest product of spatial congruence and spectral congruence, 

i.e. for each component (𝒂'-, 𝒃'-, 𝒄'-) in the first session, we 

found (𝒂)+, 𝒃)+, 𝒄)+) in the second session such that 𝑗 = argmax
)

tr((𝒂'-4𝒂)+) ∗ ((𝒄'-4𝒄)+)) , 𝑖 = 1,… , 𝑅 (19) 

where 𝒂'* , 𝒃'* , 𝒄'* represent the 𝑖FG spatial, temporal and 

spectral component of the 𝑘FG (𝑘 = 1, 2) session, respectively. 

Note that we do not expect temporal congruence across 

sessions. For Subject 1, we found three CCs with large 

congruence product (>0.6). Fig. 7 shows two of these 

components, the third is included in the supplemental material, 

Fig. S2. The congruence was 0.892 (spatial mode) and 0.997 

(spectral mode) for component (a) and 0.984 (spatial mode) 

and 0.967 (spectral mode) for (b). 

The first network for Subject 1 includes contacts in angular 

gyrus, mid-temporal gyrus, and precuneus all consistent with 

activation in the Default Mode Network (DMN) [55]. 

Electrodes were not present in this subject for other regions 

that are typically included in the DMN, such as the superior 

frontal gyrus (SFG).  The spectrum for this component is 

dominated by alpha rhythms, which is consistent with studies 

of the DMN in the EEG/MEG literature [56]–[58]. The second 

network we found for this subject contains contacts mainly in 

the somatosensory and motor cortex with a peak in the beta 

band, which is consistent with sensorimotor rhythms as 

reported in the EEG/ECoG literature [59], [60]: beta activity 

appears most strongly in both motor and somatosensory cortex 

in movement preparation periods and steady contraction 

periods following a movement. These subjects were monitored 

during periods of natural inactivity when we might expect 

some amount of motor activity, for example page-turning 

while reading.   

 
Figure 8: Two consistent components for Subject 2: (a) default mode network in alpha frequency and (b) motor network centered on the mu range. Details as for 

Fig. 6. 
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The temporal mode shows the power envelope of the SEEG 

signals, i.e. the dynamic variation in power across time of the 

spectral model. The bottom right sub-figure shows the power 

spectrum of this envelope estimated using the Welch method 

[61] after high-pass filtering with a cutoff frequency 0.02 Hz 

to remove DC drift. For both components, the power spectral 

density peaks at a frequency of approximately 0.1 Hz (0.05 

Hz – 0.15 Hz), which is similar to the dominant frequency 

found in resting fMRI BOLD (Blood Oxygen Level 

Dependent) oscillations [62]. 

For Subject 2, we also found three CCs. Fig. 8 shows two of 

the three, the remaining one is shown in Fig. S3. Again, the 

similarity between sessions was high with congruence 0.652 

(spatial mode) and 0.959 (spectral mode) for the DMN and 

0.799 (spatial mode) and 0.957 (spectral mode) for the 

somatomotor network. In this subject there are electrodes in 

the SFG, unlike the first subject, and we now observe that the 

DMN does indeed include SFG. As with the first subject we 

see a second strong component in the somatosensory and 

motor cortex. However, unlike the first subject, the signal in 

this case is predominantly mu rather than beta. Again, this is 

consistent with periods of natural inactivity, where mu 

rhythms are typically observed in somatomotor cortex in 

parallel with alpha activity in the visual cortex during resting 

[63]. 

3) Inter-subject network comparison 

When comparing the results between Subject 1 and 

Subject 2, we found that in both cases the DMN activity is 

dominated by alpha activity while the motor network is 

predominantly beta or mu, despite the fact the two subjects 

had different electrode implantation schemes and different 

locations of their epileptogenic zones (see Table II). 

4) Artifact Detection 

SRSCPD not only can be used to identify brain networks, it 

can also detect artifacts. For example, in the supplemental 

material, Fig. S4 shows a component that was mismatched 

(i.e. low spatial and spectral congruence) between the two 

sessions for Subject 1. Similarly, Fig. S5 shows one of the 

components that was mismatched between sessions for 

Subject 2. These mismatched components are likely artifacts 

as they mostly contain a burst or bursts of activity on a very 

limited number of channels and the time courses do not look 

physiological in nature. 

5) Comparison to Results Using ALS Algorithm 

We also applied the traditional ALS algorithm to the same 

datasets and compared the components obtained from the two 

methods. ALS did not find as many functionally distinct 

networks as SRSCPD did from each individual session based 

on the same rank selection criterion. The rank was estimated 

to be 𝑅 = 2 and 3 for the two sessions of Subject 1 and 𝑅 = 3 

and 3 for the two sessions of Subject 2 using the ALS 

algorithm as shown in Fig. S6. Moreover, we only found one 

CC (a DMN shown in Fig. S7) between the two sessions in 

one of the subjects. No other CCs were found as the maximum 

congruence product (Eq. 19) was less than 0.15 between all 

other pairs of components. These results show that ALS is not 

as robust as the SRSCPD algorithm especially when SNR is 

low. See supplemental materials (Fig. S6 – S16) for details. 

V. CONCLUSION 

We have described a novel framework for decomposition of 

electrophysiological data using a third-order tensor. Our 

SRSCPD approach is based on the original ALS algorithm, 

using a warm-start in a rank-recursive search to both improve 

the quality of results and reduce computation cost relative to 

conventional ALS with multi-start. The SRSCPD framework 

is scalable to large datasets due to its use of the warm start. 

We have shown its application to SEEG data in two subjects 

with epilepsy and found two consistent brain networks across 

different sessions of recordings several hours apart and in two 

different subjects. In contrast, ALS found only one consistent 

network (the default mode) in one subject. This consistency 

shows promise for the use of SRSCPD for robust 

identification of spontaneous brain network activity from 

invasively recorded EEG in individual subjects. 
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