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Comparing a Distributed Parameter Model-Based

System Identification Technique with More

Conventional Methods for Inverse Problems
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Abstract. Three methods for the estimation of blood or breath alcohol concentration

(BAC/BrAC) from biosensor measured transdermal alcohol concentration (TAC) are eval-

uated and compared. Specifically, we consider a system identification/quasi-blind decon-

volution scheme based on a distributed parameter model with unbounded input and output

for ethanol transport in the skin and compare it to two more conventional system identi-

fication and filtering/deconvolution techniques for ill-posed inverse problems, one based

on frequency domain methods, and the other on a time series approach using an ARMA

input/output model. Our basis for comparison are five statistical measures of interest to al-

cohol researchers and clinicians: peak BAC/BrAC, time of peak BAC/BrAC, the ascending

and descending slopes of the BAC/BrAC curve, and the area underneath the BAC/BrAC

curve.
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1 Introduction

Distributed parameter systems (i.e. partial and functional differential equations)

have been used for modeling, simulation, control, estimation, identification, and

optimization in a variety of applications arising in engineering, biology, chem-

istry, physics, space science, and economics. The appeal of using these infinite

dimensional systems to describe the evolution of the state is based on a number

of factors. These include: (1) their ability to yield high fidelity models with rela-

tively low dimensional parameterization, (2) the fact that they typically result when

modeling is based on first principles and physics-based empirical observations,

and (3) that there is a rich, functional analytic theory upon which the analyses
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2 J. Li, S. E. Luczak and I. G. Rosen

of well-posedness (i.e. existence, uniqueness, continuous dependence), stability,

long-term behavior, and finite dimensional and numerical approximation and con-

vergence, can be based. In addition, although distributed parameter models result

in an infinite dimensional state equation, by exercising some level of mathematical

precision, they can readily be interfaced with finite dimensional control inputs and

output observations, which are typically encountered in practice.

There is a large body of research on the theory and application of distributed

parameter systems in control science, and in particular, their identification and es-

timation, reported in the literature. Rather comprehensive surveys can be found in

a number of monographs by Banks, et al. ([1] and [3]) and in [15]. However, we

know of no studies where the performance of these models once their unknown

parameters have been identified, is compared to that of models obtained and iden-

tified by more conventional means. More specifically, how well do these fit models

perform when they are actually used to design a controller, simulate a process, or

as in the particular problem of interest to us here, solve an in general, ill-posed

inverse problem, when compared to more traditional finite dimensional techniques

found in the engineering literature.

In this brief paper, we present and discuss our experience using a distributed

parameter system as the basis for a data analysis system for a biosensor that mea-

sures transdermal alcohol concentration (TAC), or more specifically, the number

of ethanol molecules evaporating from the surface of the skin ([17], [26], [27],

[28], [29]). The role of the data analysis system is to use the TAC signal from the

biosensor to estimate the concentration of ethanol in the blood. Blood and breath

alcohol concentration (BAC/BrAC) are currently the basis for all clinical research

on the effects of alcohol on human physiology and behavior. In addition, both

BAC and BrAC are used as quantitative determinants of whether an individual is

legally intoxicated or driving under the influence (DUI) of alcohol. A passive,

non-invasive biosensor that provides researchers and clinicians with an accurate

and continuous estimate of BAC in real time from the field would be considered a

major breakthrough and is currently the focus of several academic and commercial

research efforts ([6], [7], [8], [9], [10], [22]). BrAC measurement taken in the field

using a breath analyzer and then followed up with a blood sample and a laboratory

determination of BAC are also the basis for arrest, prosecution, and determination

of guilt in cases of DUI.

Our approach here is to formulate the problem as a single input single output

(SISO) system in which the alcohol in the blood is the source of the input and

the biosensor measured transdermal alcohol is the output signal. The objective

of estimating the BrAC/BAC then takes the form of a system identification/input

determination, or blind deconvolution problem. We model the forward transport

of ethanol through the skin using a one-dimensional diffusion equation with in-
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A Comparison of Methods for System Identification 3

put and output on the boundary. Linear semigroup theory ([18], [25], [30]) and

the infinite dimensional variation of constants formula are used to obtain a para-

metric representation for the unknown forward convolution filter. We then show

how the approximation theory for linear semigroups can be used to develop fi-

nite dimensional convergent numerical approximation schemes for estimating the

convolution kernel and deconvolving BAC from TAC.

The ideas outlined in the previous two paragraphs have been presented in de-

tail elsewhere (see, for example, [6] or [22]), and we only provide a brief sum-

mary here. Of primary interest to us in this paper, however, is the comparison

of this distributed parameter modeling based approach to two more conventional

system identification methods, a Fourier/frequency domain based approach [20]

and a scheme based on an autoregressive moving average (ARMA) input/output

response surface [11]. This comparison is of particular interest to us as we are

unaware of any previous studies that show how these methods perform with ex-

tremely limited data. Indeed, it is quite common in practice that only one episode

of lab/clinic calibration data is available for a given subject. For our purposes

here, a drinking episode is defined to be the period of time, and the BAC, BrAC

or TAC data during that period of time, in between two periods of zero (or be-

low some pre-determined level) BAC, BrAC or TAC. A more precise definition of

drinking episode will be given later in Section 4 when we discuss the results of our

numerical studies.

Our comparison here is based on actual clinical BrAC and TAC data collected

in the field by one of the co-authors (S.E.L.) using a transdermal biosensor and a

hand-held portable breath analyzer. We note in passing that alcohol researchers

almost always use BrAC as a proxy for BAC which for obvious reasons is far

more difficult, expensive, and invasive to measure. In carrying out our research

we did not have access to, or, the resources and IRB approval to collect our own,

simultaneous BAC and TAC measurements. In fact, direct BAC measurements

for the purpose of research are rather rare (most researchers rely on BrAC) and

we are not aware of the availability of any simultaneous direct BAC and TAC

measurements within the research community.

Since the primary focus of our study here is the comparison of first principles

physics-based distributed parameter modeling to more conventional response sur-

face methods for identifying input/output models, central to our effort is the use of

diffusion to model the movement of ethanol molecules from the blood through the

skin to the biosensor on the surface of the skin. The three methods described here

for identifying input/output models for the transdermal transport of ethanol with

TAC as the output, will work equally well with either BAC or BrAC as the input.

If one assumes linear actuator dynamics (to borrow a term from the control liter-

ature) in the forward model to describe the relationship between BrAC and BAC,
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4 J. Li, S. E. Luczak and I. G. Rosen

since the model itself in its entirety is linear, the form of the model is exactly the

same whether BAC or BrAC is used as the input, with only the values of the inde-

pendently identifiable parameters (conceivably) changing when the models are fit

to experimental or clinical data.

The assumption of linear actuator dynamics in the relationship between BrAC

and BAC is justified since this is how the breath analyzer works; quantitatively it

is based on the empirically determined and accepted blood/breath partition ratio

of 2300:1 (there is some debate as to whether this should be reduced to 2000:1,

see, for example, [12]). However, this is of no consequence to us in our study here

since we fit the complete model based on input (i.e. BrAC) and output (i.e. TAC)

data. Since the model is linear, the actuator dynamics in the form of a gain in front

of the BrAC input converting it to BAC, and the sensor dynamics in the form of a

gain in front of the concentration of ethanol on the surface of the skin converting

it to measured TAC output, are simply multiplied. This product (the two gains are

not individually identifiable) is one of the parameters that are estimated when the

distributed model is fit.

We note that it is conceivable that there could be some advantages to basing the

model fits on a direct measurement of BAC rather than BrAC since, for example,

it would not be susceptible to confounding effects such as mouth alcohol and any

nonlinear disturbances introduced by the breath analyzer. On the other hand, there

is almost certainly some level of uncertainty introduced when BAC is determined

in the laboratory. In addition, along with the relative unavailability of BAC data, a

model that yields estimates of BrAC from TAC rather than BAC from TAC is likely

to be more desirable to alcohol researchers and clinicians since it is BrAC data that

they are used to looking at and working with. BrAC also has the added benefit of

being a measure of arterial BAC, which is closer to the alcohol concentration that

passes the blood-brain barrier than is found in veinous blood.

An outline of the remainder of the paper is as follows. In Section 2 we briefly

summarize the problem of estimating BAC from TAC, its formulation as a blind

deconvolution problem, and modeling it using a distributed parameter system. In

Section 3 we describe the scheme for estimating the convolution kernel and the de-

convolution of BAC from TAC and we also discuss frequency domain and ARMA

based approaches. In Section 4 we present our numerical results and a final fifth

section contains a discussion of the results and concluding remarks.
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A Comparison of Methods for System Identification 5

2 Estimating Blood Alcohol Concentration from Transdermal

Alcohol Biosensor Measurements

There is currently no known procedure for the accurate and unobtrusive field col-

lection of quantitatively interpretable alcohol consumption data. Collection of

blood and urine samples in the field is not practical and breath analyzers and drink

diaries have either heavy subject burden or large time gaps between assessment

points, hinder naturalistic drinking behavior, and may not be accurate even when

individuals are trying to be compliant. Breath analyzer readings are frequently too

high due to mouth alcohol or too low due to not taking deep lung breaths, while

drink diaries are inaccurate due to not knowing the alcohol content of a drink or

the amount consumed.

Biosensor devices that measure TAC, the amount of alcohol diffusing through

the skin, are proving to be a promising technology. Unfortunately, however, to

date, they are primarily being used as abstinence monitors because TAC data does

not consistently correlate with BrAC and BAC across individuals, devices, and

environmental conditions. To wit, there is currently no well-established method

for producing reliable estimates of BrAC or BAC (eBrAC and eBAC) from TAC

data. As we indicated previously, the breath analyzer relies on a relatively simple

model from basic chemistry (i.e., Henry’s Law) for the exchange of gases between

circulating pulmonary blood and alveolar air [13]. This model has been found

to be reasonably robust across subjects and the environment. The transport and

filtering of alcohol by the skin on the other hand, is physiologically more complex

and based on a number of factors that differ across individuals (e.g., skin layer

thickness, tortuosity) and drinking episodes within individuals (e.g., temperature,

skin hydration, vasodilation). This means that, regardless of how reliable and

accurate transdermal alcohol devices become at measuring TAC, the raw TAC data

will never trivially map directly onto BrAC/BAC across individuals and drinking

episodes.

2.1 A Quasi-Blind Deconvolution Problem

In order to address this problem, we have been developing a data analysis system

to accompany the sensor hardware that converts TAC to BAC/BrAC. In a rela-

tively recent series of papers [7],[8],[9], Dougherty et al. have looked at fitting

standard linear regression models to convert TAC to BrAC. Our approach, on the

other hand, is based on a first principles physics-based model (in the form of a dis-

tributed parameter system or partial differential equation (PDE)) for the transport

of ethanol molecules from the blood through the epidermal layer of the skin and

its measurement by the sensor. The use of the physics-based model as opposed to
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6 J. Li, S. E. Luczak and I. G. Rosen

generic input-output response surface techniques, such as standard linear regres-

sion, neural networks, etc. allows us to keep the dimension of the parameter space

relatively low, therefore reduce the likelihood of overfitting. The result is a forward

input/output model that can be formulated as either a continuous or discrete time

convolution in which the convolution kernel or filter, while unknown, is defined in

terms of the parameters that appear in the physics based model. Obtaining an esti-

mate for the BAC or BrAC can then be formulated as a blind or quasi blind (since

the filter is defined parametrically) deconvolution problem. The current protocol

for using the system involves simultaneously collecting calibration BrAC and TAC

(by using the sensor) in either the lab or clinic for a single drinking episode before

sending the patient or research subject out in the field with just the TAC sensor.

Estimated BrAC from the TAC for all subsequent drinking episodes recorded in

the field is then obtained by using the calibration data to fit the parameters that de-

termine the filter, and then using the fit filter to deconvolve estimated BrAC from

the TAC.

2.2 A Distributed Parameter Model for the Transdermal Transport of

Ethanol

Let ϕ(t, η) denote the concentration in moles/cm2 of ethanol in the interstitial fluid

in the epidermal layer of the skin at depth η cm and time t in seconds. Let L denote

the skin thickness in cm. We model the transport of ethanol through this medium

as a diffusion process

∂ϕ

∂t
(t, η) = D

∂2ϕ

∂η2
(t, η), 0 < η < L, t > 0 (2.1)

where D > 0 denotes the diffusivity in units of cm2/sec. For boundary conditions,

at the skin surface (η = 0), we model evaporation of the alcohol vapor using a

Robin boundary condition; the flux (from right to left) is proportional to ethanol at

the boundary of the epidermal layer,

D
∂ϕ

∂η
(t, 0) = αϕ(t, 0), t > 0 (2.2)

where α > 0 denotes the constant of proportionality in units of cm/sec. At the

interface of the dermal layer (which has a blood supply) and the epidermal layer

(which does not contain blood vessels) (η = L) we impose a Neumann boundary

condition. That is that the flux (from right to left) is proportional to the BAC,

D
∂ϕ

∂η
(t, L) = βu(t), t > 0 (2.3)
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A Comparison of Methods for System Identification 7

where the parameter β > 0 characterizes the exchange of ethanol molecules be-

tween the blood and the interstitial fluid in units of moles / (cm × sec × BAC (or

BrAC) units), and u denotes the concentration of ethanol in the blood as given in

BAC (or BrAC) units. The boundary condition (2.3) serves as our input condition.

We assume that there is no alcohol in the epidermal layer at time t = 0 which

yields the initial conditions

ϕ(0, η) = 0, 0 < η < L (2.4)

We model the processing by the TAC sensor of the ethanol evaporating from the

surface of the skin via a linear relation which serves as an output condition

y(t) = γϕ(t, 0), t > 0 (2.5)

where γ denotes the constant of proportionality in units of TAC units × cm2/mole.

As it stands, the model given by the equations (2.1) - (2.5) is determined by five

parameters: D,L, α, β and γ. However, not all five of the parameters are indepen-

dent nor are they uniquely identifiable from the input/output data. Without loss of

generality and by converting to what are essentially dimensionless quantities, the

number of unknown parameters to be fit can be reduced to two, which we denote

by the vector q = [q1 q2]
T [6]. For simplicity, leaving the names of the variables

unchanged (although their units certainly are), in this way, our input/output model

becomes
∂ϕ

∂t
(t, η) = q1

∂2ϕ

∂η2
(t, η), 0 < η < 1, t > 0 (2.6)

q1

∂ϕ

∂η
(t, 0)− ϕ(t, 0) = 0, t > 0 (2.7)

q1

∂ϕ

∂η
(t, 1) = q2u(t), t > 0 (2.8)

ϕ(0, η) = 0, 0 < η < 1 (2.9)

y(t) = ϕ(t, 0), t > 0 (2.10)

The input/output model (2.6) - (2.10) is an example of a distributed parameter

system. We note that there is a feature of the model that makes it somewhat non-

standard: the input and the output are on the boundary. In the next section, when

the model is reformulated abstractly as an abstract evolution equation in an infinite

dimensional Hilbert space, this results in the input and output operators being

unbounded in the standard space where an initial boundary value problem such

as (2.6) - (2.10) is typically set. This requires some care (see, for example, [5]

and [21]) when we re-cast the problem using techniques from functional analysis,

specifically, linear semigroup theory. Also, reformulating the problem in discrete

time is some help in this regard as well.
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8 J. Li, S. E. Luczak and I. G. Rosen

3 Determining the Convolution Kernel or Impulse Response

Function

In this section, we describe three techniques for obtaining and estimating the im-

pulse response function for the input/output model for the dynamical system de-

scribed in the previous section. We first consider an approach based on the first

principles physics-based distributed parameter model discussed in Section 2.2. We

then look at two more conventional approaches: a method based on frequency do-

main techniques and one based on an ARMA model.

3.1 Distributed Parameter Modeling and the Impulse Response Function

In this section, we provide a brief summary of how tools from functional analysis

and in particular, the theory of linear semigroups of operators can be used to trans-

form the distributed parameter model presented in the previous section into a linear

input/output model in the form of a convolution. We also describe how the result-

ing impulse response function, or convolution kernel or filter, which is defined in

terms of operators on infinite dimensional spaces, can be approximated via matrix

representations for linear operators defined on a sequence of approximating finite

dimensional subspaces. A more detailed presentation of the results discussed here

including relevant theorems and proofs can be found in [6] and [22].

Abstract Parabolic Input/Output Systems, their Associated Impulse

Response Functions, and their Identification

Let V and H be Hilbert spaces that satisfy the dense and continuous embeddings

V →֒ H →֒ V ∗, where V ∗ denotes the space of continuous linear functionals that

is dual to V . Let 〈·, ·〉 denote the H inner product. For q ∈ {Q, d}, a compact

metric space, let a(q; ·, ·) : V ×V → R be a bilinear form satisfying the following

three conditions:

(i) (Boundedness)

|a(q;ψ1, ψ2)| ≤ ρ||ψ1|| ||ψ2||, ψ1, ψ2 ∈ V

(ii) (Coercivity)

a(q;ψ, ψ) + λ|ψ|2 ≥ µ||ψ||2, ψ ∈ V

(iii) (Continuous Dependence)

|a(q1;ψ1, ψ2)−a(q2;ψ1, ψ2)| ≤ d(q1, q2)||ψ1|| ||ψ2||, ψ1, ψ2 ∈ V, q1, q2 ∈ Q
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A Comparison of Methods for System Identification 9

For q ∈ {Q, d} let b(q; ·) : V → R and c(q; ·) : V → R be linear and continu-

ous and consequently, therefore, it follows that b(q; ·) = b(q) for some b(q) ∈ V ∗

and c(q; ·) = c(q) for some c(q) ∈ V ∗. We then consider the input/output system

in weak form given by

〈ϕ̇, ψ〉+ a(q;ϕ, ψ) = b(q;ψ)u, ψ ∈ V, y = c(q;ϕ) (3.1)

or equivalently

〈ϕ̇, ψ〉+ a(q;ϕ, ψ) = 〈b(q), ψ〉V ∗,V u, ψ ∈ V, y = 〈c(q), ϕ〉V ∗,V (3.2)

where 〈·, ·〉V ∗,V denotes the natural extension of theH inner product to the duality

pairing between V and V ∗. If we set W (0, T ) = {ψ : ψ ∈ L2(0, T, V ), ψ́ ∈
L2(0, T, V

∗)} and u ∈ L2(0, T ) it can be shown [16] that the system (3.1) or

(3.2) admits a unique solution ϕ ∈ W (0, T ) that depends continuously on u ∈
L2(0, T ). It follows that W (0, T ) ⊆ C(0, T,H) and that y ∈ L2(0, T ).

For q ∈ Q, the q-dependent bilinear form on V ×V , a(q; ·, ·) : V ×V → R, de-

fines a bounded linear operatorA(q) ∈ L(V, V ∗) by 〈A(q)ψ1, ψ2〉 = −a(q;ψ1, ψ2),
for ψ1, ψ2 ∈ V . Then, if we let H denote either of the spacesH or V ∗, we can con-

sider the linear operator A(q) to be the unbounded linear operator, A(q) : Dq ⊂
H → H where Dq = V in the case H = V ∗, and Dq = {ψ ∈ V : A(q)ψ ∈ H} in

the case H = H . It can then be shown [2], [3], [30] that A(q) is a closed, densely

defined unbounded linear operator on H and it is the infinitesimal generator of an

analytic semigroup of bounded linear operators, {eA(q)t : t ≥ 0} on H.

For q ∈ Q, define the bounded linear operators B(q) : R → V ∗ and C(q) :

V → R by 〈B(q)v, ψ〉V ∗,V = b(q;ψ)v = 〈b(q), ψ〉V ∗,V v, andC(q)ψ = c(q;ψ) =
〈c(q), ψ〉V ∗,V , respectively, for ψ ∈ V and v ∈ R. The input/output system can

now be written formally in the standard form in H as

ẋ(t) = A(q)x(t) +B(q)u(t)

y(t) = C(q)x(t), t > 0
(3.3)

where the state x(t) = ϕ(t, ·) ∈ H. Assuming that the system is initially at rest

(i.e. that ϕ(0, ·) = 0), and using the fact that {eA(q)t : t ≥ 0} is an analytic

semigroup on H and therefore that eA(q)tψ ∈ Dq ⊆ V , for ψ ∈ V ∗, we obtain

from the abstract variation of constants formula that

y(t) =

∫ t

0

C(q)eA(q)(t−s)B(q)u(s)ds =

∫ t

0

h(q; t− s)u(s)ds (3.4)

where h(q; t) = C(q)eA(q)tB(q), t > 0.
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10 J. Li, S. E. Luczak and I. G. Rosen

Let a sampling time τ > 0 be given and consider zero order hold inputs of the

form u(t) = ui, t ∈ [iτ, (i + 1)τ), i = 0, 1, 2, . . . (typically ui = u(iτ), i =
0, 1, 2, . . . , where u is a given continuous time input). Set xi = x(iτ) and let

yi = y(iτ), i = 0, 1, 2, . . . . It then follows in the usual way that

xi+1 = Â(q)xi + B̂(q)ui, yi = Cxi, i = 0, 1, 2, . . . (3.5)

with ϕ0 = 0 ∈ V , where Â(q) = eA(q)τ ∈ L(V, V ), and B̂(q) =
∫ τ

0
eA(q)sB(q)ds

∈ L(R, V ). Boundedness of the operators Â(q) and B̂(q) follows from the fact

that {eA(q)t : t ≥ 0} is an analytic semigroup on V,H and V ∗ [2], [3], [16],

[30]. If A(q) : Dq ⊂ V ∗ → V ∗ is invertible with bounded inverse, it follows that

B̂(q) =
∫ τ

0
eA(q)sB(q)ds = A(q)−1eA(q)sB(q)

∣

∣

∣

τ

0
= (Â(q) − I)A(q)−1B(q) and

therefore that

yi =

i−1
∑

j=0

CÂ(q)i−j−1B̂(q)uj

=

i−1
∑

j=0

CÂ(q)i−j−1(Â(q)− I)A(q)−1B(q)uj , i = 0, 1, 2, . . .

(3.6)

or that

yi(q) =

i−1
∑

j=0

ĥi−j(q)uj , i = 0, 1, 2, . . . (3.7)

where ĥi(q) = CÂ(q)i−1(Â(q)− I)A(q)−1B(q), i = 0, 1, 2, . . .
Given training data, {ũj , ỹj}, j = 0, 1, 2, . . . , N , we formulate the identifica-

tion problem as a nonlinear least squares fit to data. That is we seek q ∈ {Q, d}
which minimizes the cost functional

J(q) =
N
∑

i=0

|yi(q)− ỹi|
2 (3.8)

where ui = ũi, i = 0, 1, 2, . . . , N .

Finite Dimensional Approximation, the Adjoint Method, and Differentiating

the Matrix Exponential

Computing the value of the cost functional J(q) and its gradient for a given value

of q ∈ {Q, d} as would be required to solve the optimization problem posed above

requires the finite dimensional approximation of the infinite dimensional operators
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A Comparison of Methods for System Identification 11

that appear in the definition of ĥi(q). For n = 1, 2, . . . , let Hn = span{ψn
j }

n
j=0 ⊂

V , and let Pn : H → Hn denote the orthogonal projection of H onto Hn

with respect to the H inner product. We assume that the {ψn
j }

n
j=0 are such that

limn→∞ Pnψ = ψ inH forψ ∈ H and in V forψ ∈ V . For n = 1, 2, . . . , and q ∈
Q, define An(q) ∈ L(Hn, Hn) to be the finite dimensional linear operator whose

matrix representation is given by ⌊An(q)⌋i,j = −[〈ψn
i , ψ

n
j 〉]

−1[a(q;ψn
i , ψ

n
j )], for

i, j = 0, 1, 2, . . . , n. In what follows, we do not distinguish between the finite

dimensional operators and their matrix representations with respect to the basis,

{ψn
j }

n
j=0, for the approximating finite dimensional subspaces, Hn, defined above.

In fact all the equations below are valid for both the finite dimensional opera-

tors and their matrix representations. Under certain conditions, in particular when

A(q)−1 exists, and λ in (ii) above is non-positive, it is not difficult to show that

An(q) = (Pn
a A(q)

−1)−1, where Pn
a is the orthogonal projection of V onto Hn

with respect to the inner product 〈·, ·〉a = a(q; ·, ·) on V . We set Ân(q) = eA
n(q)τ

and obtain the finite dimensional approximating discrete time input/output system

given by

xni+1 = Ân(q)xni + (Ân(q)− I)An(q)−1P̂nB(q)ui

yn(q) = Cxni , i = 1, 2, . . .
(3.9)

where xn0 = 0 ∈ Hn, and P̂n denotes the standard bounded extension of Pn to

V ∗. It follows that

yni (q) =

i−1
∑

j=0

C(Ân(q))i−j−1(Ân(q)− I)P̂nB(q)uj

=

i−1
∑

j=0

ĥni−j(q)uj , i = 0, 1, 2, . . .

(3.10)

where ĥni (q) = C(Ân(q))i−1(Ân(q)− I)P̂nB(q), i = 1, 2, . . . . With the help of

the Trotter-Kato semigroup approximation theorem, it can be shown that ĥni (q) →
ĥi(q) as n→ ∞, uniformly in q for q ∈ {Q, d} and uniformly in i for i in bounded

subsets of Z. We then seek q ∈ {Q, d} which minimizes the cost functional

Jn(q) =

N
∑

0

|yni (q)− ỹi|
2 (3.11)

where ui = ũi, i = 0, 1, 2, . . . , N .

The cost functional Jn is minimized iteratively. It is clear that for a given value

of q, the value of Jn(q) can now easily be computed. The gradient of Jn(q)
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12 J. Li, S. E. Luczak and I. G. Rosen

is computed using the adjoint method [14]. For i = 0, 1, 2, . . . , N , set vni =
2CT (Cxni − ỹi),∈ Rn+1 and define the adjoint system

zni−1 = [Ân(q)]T zni + vni−1, i = N,N − 1, . . . , 1, znN = vnN (3.12)

The gradient of Jn(q) can then be computed as

−→
▽Jn(q) =

N
∑

i=1

[zni ]
T

{

∂Ân(q)

∂q
xni−1

−
∂Ân(q)

∂q
(Ân(q)− I)P̂nB(q)ũi−1P̂

nB(q)ũi−1

−(Ân(q)− I)
∂

∂q
(Ân(q)− I)

}

(3.13)

The tensor
∂Ân(q)

∂q
can be computed at the same time that the matrix (repre-

sentation for the operator) Ân(q) is computed by making use of the sensitivity

equations. For t ≥ 0 and q ∈ Q, set Φ
n(q; t) = eA

n(q)t. Then Φ
n(q; ·) is the

unique principal fundamental matrix solution to the initial value problem

Φ̇
n(q; ·) = An(q)Φn(q; ·), Φ

n(q; 0) = I (3.14)

Setting Ψ
n(q; t) = ∂φn(q; t)/∂q, differentiating with respect to q, interchang-

ing the order of differentiation, and using the product rule, we obtain

Ψ̇
n(q; ·) = An(q)Ψn(q; ·) +

∂An(q)

∂q
Φ

n(q; ·), Ψ
n(q; 0) = 0 (3.15)

Combining these two initial value problems and solving we obtain





∂Ân(q)

∂q
Ân(q)



 =

[

Ψ
n(q; τ)

Φ
n(q; τ)

]

= e







An(q) (∂An(q)/∂q)

0 An(q)






τ [

0

I

]

(3.16)

Application to the System Discussed in Section 2.2

Let Q be a closed and bounded subset of R2 endowed with the Euclidean metric,

letH = L2(0, 1) together with the standard inner product 〈ψ1, ψ2〉 =
∫ 1

0
ψ1(x)ψ2(x)dx,

and norm denoted by | · |, and let V be the Sobolev space V = H1(0, 1) together

with its standard inner product 〈〈ψ1, ψ2〉〉 =
∫ 1

0
ψ1(x)ψ2(x)dx+

∫ 1

0
ψ

′

1(x)ψ
′

2(x)dx
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A Comparison of Methods for System Identification 13

and norm denoted by || · ||. Then we have the usual dense and continuous embed-

dings V →֒ H →֒ V ∗, where V ∗ denotes the space of distributions dual to V . The

forms and functions a(q; ·, ·) : V × V → R, b(q; ·) : V → R and c(·) : V → R
are given by

a(q;ψ1, ψ2) = ψ1(0)ψ2(0) + q1

∫ 1

0

ψ
′

1(x)ψ
′

2(x)dx, ψ1, ψ2 ∈ V (3.17)

b(q;ψ) = q2ψ(1), and c(ψ) = ψ(0), forψ ∈ V . It follows that b(q) = q2δ(· − 1) ∈
V ∗ and c(q) = δ ∈ V ∗, where δ denotes the Dirac delta distribution, or unit im-

pulse at zero.

With regard to finite dimensional approximation, for n = 1, 2, . . . , let {ψn
j }

n
j=0

denote the set of standard linear B-spline on the interval [0, 1] defined with respect

to the usual uniform mesh, {j/n}nj=0, and set Hn = span{ψn
j }

n
j=0 ⊂ V (note

the ψn
j are the usual “pup tent” or “chapeau” functions of height one and support

of width 2/n, ⌊(j − 1)/n, (j + 1)/n⌋
⋂

⌊0, 1⌋). If Pn : H → Hn denotes the

orthogonal projection ofH = L2(0, 1) ontoHn, it is well known (see for example

[23]) that limn→∞ Pnψ = ψ in H for ψ ∈ H and in V for ψ ∈ V .

3.2 Frequency Domain Techniques and the Impulse Response Function

In this section, we solve the kernel estimation problem using a signal process-

ing approach. Non-parametrically we can rewrite equation (3.7) in a traditional

convolution equation in the continuous domain as follows:

y(t) = h(t) ∗ u(t) =

∫ t

0

h(t− τ)u(τ)dτ (3.18)

where ∗ denotes the convolution operation.

The convolution Theorem [4] states that if h(t) has a Fourier transform H(f)
and u(t) has a Fourier transform U(f), then h(t) ∗ u(t) has a Fourier transform

H(f) ·U(f). Therefore, the convolution equation in Section 3.1 can be written in

a frequency domain representation as

Y (f) = F{y(t)} = F{h(t)∗u(t)} = F{h(t)}·F{u(t)} = H(f)·U(f) (3.19)

where F{·} is the forward Fourier transform. Then we can estimate the spectrum

of h(t), i.e. H(f), directly as follows

Ĥ(f) =
Y (f)

U(f)
=

F{y(t)}

F{u(t)}
(3.20)
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14 J. Li, S. E. Luczak and I. G. Rosen

The estimated spectrum Ĥ(f) must be low-pass filtered with a certain cut-off

frequency before taking the inverse Fourier transform back to the time domain for

the following two reasons. First, the estimated spectrum Ĥ(f) is very noisy due

to the limited number of samples in the training dataset. Second, according to the

Nyquist-Shannon sampling theorem [24], if the sampling frequency Fs is twice

higher than or equal to the maximum frequency of the actual signal, then that band

limited signal can be exactly recovered by low-pass filtering with cut-off frequency

at Fs/2. In other words, the signal of interest in the frequency domain contains

no more information beyond Fs/2 provided that the Nyquist-Shannon condition

is satisfied. That means the non-zero entries beyond Fs/2 in Ĥ(f) comes purely

from the noise component of the signal and therefore we can safely reduce the

noise via a low-pass filtering with cut-off frequency at Fs/2 without losing any

information about the signal. Mathematically, this procedure can be expressed as

Ĥ
′

(f) = Ĥ(f) ·WLPF (f) (3.21)

where WLPF (f) is the low-pass filtering window

WLPF (f) =

{

1, f < Fs/2

0, f ≥ Fs/2
(3.22)

Finally, the estimated convolution kernel, denoted as ĥFFT (t), can be obtained

from

ĥFFT (t) = F−1{Ĥ
′

(t)(f)} (3.23)

where F−1{·} is the standard inverse Fourier transform.

3.3 ARMA Modeling and the Impulse Response Function

We can also model the underlying system as an ARMA process as follows

φ(t)y(t) = θ(t)u(t) + e(t) (3.24)

where φ(t) and θ(t) are the auto-regressive (AR) and moving average (MA) co-

efficients respectively, e(t) is the estimation error or as it is sometimes called, the

residue or noise, u(t) is the driving process or the input to the system, and y(t) is

the observed process or the output of the system. In our case, BrAC is the u(t) and

TAC is the y(t).
The system can be identified and the impulse response can be obtained provided

θ(t) and φ(t) are accurately estimated. There are various ways to estimate the

parameters θ(t) and φ(t). For example, the AR coefficients φ(t) can be estimated
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A Comparison of Methods for System Identification 15

by solving the well-known Yule-Walker equation using Levinson’s recursion. The

MA coefficients θ(t) can be estimated via Durbin’s algorithm. If the data are

jointly Gaussian, then a maximum likelihood estimation technique can also be

applied to estimate the coefficients. In this effort, to better incorporate delays

between BrAC and TAC due to the nature of the data, we adopt the method from

[19] which is briefly summarized here.

• We set the maximal possible AR and MA order to be 60 and 120, respectively,

heuristically based on the data. In fact, it turns out that our estimation results

are not very sensitive to the choices of these two maximal orders.

• We decrease the AR order one at a time forming a set of lower order models

and use Minimum Description Length (MDL) criterion to evaluate and select

the best one, the one with the lowest MDL score. This implicitly estimates

the AR order while the MA order is fixed at the maximal order of choice at

this step.

• We set the AR order to be the best one obtained in the previous step and

remove MA coefficients one at a time from the one with lowest S/N ratio

defined in equation (18) in [19], forming a set of lower order models and then

use MDL to select the best one. This step estimates the MA order, thereby

establishing the overall ARMA order.

• After finding the optimal orders, we fit the ARMA model based on a least-

squares approach to obtain θ(t) and φ(t).

Once θ(t) and φ(t) are obtained from the steps above, the impulse response

h(t) can be estimated directly from y(t) by setting u(t) = δ(t), where δ(t) is

the standard Dirac delta function. The estimated ĥ(t), termed ĥARMA(t) for this

method, is also low-pass filtered with the same cut-off frequency Fs/2 as described

in Section 3.2.

4 Results

In this section, we applied the three methods to the actual data described below in

Section 4.1 and then evaluated their performance. We first performed a test on the

training session to check how well the three models could be fit to the data. This

was done by convolving the estimated ĥ(t) with the training BrAC and comparing

the result against the training TAC. Second, to further test the performance of the

estimation, we used ĥ(t) to deconvolve the testing TACs in another ten drinking

episodes of data that were not used in training and then compared the deconvolu-

tion results with the contemporaneously collected BrACs. The deconvolution was

done via solving an optimization problem described in Section 4.2. Then statistics
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16 J. Li, S. E. Luczak and I. G. Rosen

Figure 1. The 11 drinking episodes including the sensor measured transdermal alco-

hol concentration (TAC) and the contemporaneously measured breath alcohol con-

centration (BrAC)

were drawn based on the comparison results from the ten testing episodes of data

and the numerical results are shown in Section 4.3. In the numerical studies to be

discussed below, a drinking episode was defined to be the period of time and the

biosensor generated TAC measurements during that period of time, occurring in

between two periods of time each demarcated by two consecutive TAC measure-

ments of zero (or at or below a baseline noise level, typically taken to be 2.0-5.0

mg/dl).

4.1 Experimental Data

One of the co-authors (S.E.L.) wore a WrisTAS™ 7 alcohol biosensor for 18 days

while also collecting breath measurements. The WrisTAS™ 7 measures the local

ethanol vapor concentration over the skin surface at 5-minute intervals. It looks

like a digital watch. The participant consumed her first drink in the laboratory

with BrAC being measured and recorded every 15 minutes from the start of the

drinking session until BrAC returned to 0.000. She then wore the TAC device in

the field and consumed alcohol ad libitum for the following 17 days. For each

drinking episode, the subject would take BrAC readings every 30 minutes until

the BrAC returned to 0.000. Fig. 1 shows the entire 18 day TAC signal along
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A Comparison of Methods for System Identification 17

with the contemporaneous BrAC measurements. Note that the TAC measurements

provided by the sensor are in units of milligrams per deciliter (mg/dl) (the scale

on the left), while the BrAC measurements are in units of percent alcohol (the

scale on the right). Both TAC and BrAC signals were linearly interpolated into a

same temporal resolution with interval of 1 minute for kernel estimation as well as

deconvolution process which will be discussed below.

(a) (b)

Figure 2. (a) The estimated impulse response ĥPDE(t) (purple), ĥFFT (t) (green)

and ĥARMA(t) (light blue). (b) The estimated TAC from convolution with training

BrAC using ĥPDE(t) (purple), ĥFFT (t) (green) and ĥARMA(t) (light blue). The

true TAC is shown in blue.

4.2 A Deconvolution Technique

A deconvolution is a process that estimates the input u(t) given the output y(t)
and the estimated kernel ĥ(t). The deconvolution result û(t) is the answer to the

question: what is the profile of BrAC given the measurements in the form of TAC?

In order to fairly compare the three methods, we need a deconvolution technique

that is independent of all three kernel estimation methods, i.e. the deconvolution

process is not biased toward any of the three kernel estimation methods. Therefore,

we performed the deconvolution via solving the following optimization problem:

û(t) = argmin
u(t)

||A(t)u(t)− y(t)||2l2 + λ1||u(t)||
2
l2
+ λ2|| ▽ u(t)||2l2 , s.t. u(t) ≥ 0

(4.1)

where A(t) is the convolution operator (Toeplitz convolution matrix in discrete

domain) formed from ĥ(t), ▽ is the gradient operator and λ1 and λ2 are two reg-

ularization parameters that both were chosen to be 0.2 empirically to impose the

magnitude constraint and the smoothness of the data. We also restrict the result to

be non-negative due to the nature of the data and the estimation problem. This op-
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18 J. Li, S. E. Luczak and I. G. Rosen

Figure 3. Prediction of BrAC (red) via deconvolution from TAC (blue) using

ĥPDE(t) (purple), ĥFFT (t) (green) and ĥARMA(t) (light blue) on the ten drinking

episodes not used in training (top row: episodes 2-6, bottom row: episodes 7-11).

timization problem is a constrained convex problem thus can be solved efficiently

via a non-negative least squares technique (Matlab function LSQNONNEG).

4.3 Experimental Results

First, we examined the kernel function estimated from the single training data us-

ing the three methods and evaluated the performance of the TAC prediction based

on the estimated kernel functions under this training setting. The three estimated

impulse responses ĥPDE(t), ĥFFT (t) and ĥARMA(t) are shown in Fig. 2a. The

convolution results on the single training episode of data are shown in Fig. 2b.

Qualitatively, we can see that ĥFFT (t) has more curvature and is less smooth

than ĥARMA(t), and than ĥPDE(t), successively. In addition, the correspond-

ing recovered TAC is closer to the true one using ĥFFT (t) than it is using either

ĥARMA(t) or ĥPDE(t). Quantitatively we evaluate the TAC recovery performance

by measuring the error, in l2 (or L2) norm sense, between the three estimated

TAC curves and the true TAC. It turns out that ĥFFT (t) yields an error of 32.388,

ĥARMA(t) yields an error of 44.898 and ĥPDE(t) yields an error of 65.373. This

is the same trend observed by inspection.

Furthermore, we evaluated the prediction performance of the three methods

on testing datasets. Fig. 3 shows results of the prediction of BrAC in the other

ten episodes of data which are totally unavailable during the training session. To

quantitatively test the performance of the predictions and compare the three ker-

nels, we take the following five measures: (1) the height of the peak (peak), (2)
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A Comparison of Methods for System Identification 19

the time delay when peak occurs (delay), (3) the ascending slope (slope 1), (4) the

descending slope (slope 2) and (5) the area under the curve (AUC). We define a

relative error of any of measurement as

|M
B̂rAC

−MBrAC |

MBrAC

× 100% (4.2)

where M
B̂rAC

and MBrAC are the measurements obtained from the estimated

BrAC and the true BrAC.

Fig. 4 shows the statistics of the relative errors of the five measures as box-

plots across ten episodes for ĥPDE(t), ĥFFT (t) and ĥARMA(t), respectively. The

associated table of statistics is shown in Table 1.

Figure 4. Box plots of the five statistics: the relative errors of peak, delay, slope 1,

slope 2 and AUC of the prediction result using ĥPDE(t) (purple), hFFT (t) (green)

and ĥARMA(t) (light blue)

5 Discussion and Concluding Remarks

Overall, the three methods are very comparable. The ARMA-based method yields

the most accurate estimation of the peak while the PDE-based method produces

the best estimation of the delay. The Fourier-based method has the least variance

out of the three, especially for the estimations of the two slopes, although it has

slightly larger bias.
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20 J. Li, S. E. Luczak and I. G. Rosen

Table 1. Five error statistics of the prediction

using (a) ĥPDE(t), (b) ĥFFT (t) and (c)

ĥARMA(t)

Peak Delay Slope 1 Slope 2 AUC

Mean 0.325 0.387 0.579 0.567 0.333

ĥPDE(t) Median 0.312 0.326 0.454 0.496 0.302

S.D. 0.268 0.256 0.417 0.468 0.169

Mean 0.291 0.418 0.456 0.519 0.302

ĥFFT (t) Median 0.310 0.359 0.502 0.431 0.304

S.D. 0.182 0.315 0.294 0.519 0.129

Mean 0.319 0.421 0.528 0.552 0.286

ĥARMA(t) Median 0.264 0.294 0.501 0.433 0.320

S.D. 0.251 0.338 0.354 0.444 0.123

In terms of parameter estimation, the Fourier-based method is very computa-

tionally efficient but theoretically has infinitely many parameters to estimate. On

the other hand, the PDE-based method requires the estimation of only two param-

eters but requires longer computational time to fit the data. The ARMA-based

method lies in between those two in terms of computational efficiency and the

number of parameters.

It is also worth noting that, from the testing results (Fig. 3) we can see that

the peak of TAC is sometimes higher than the peak of BrAC but sometimes lower,

reflecting the large variability of the transport and filtering of alcohol by the skin,

even within individuals. An LTI model probably may not be capable of fully cap-

turing the dynamics of the process, thus yielding a good estimation of the BrAC

given this variability. However, considering that usually only one lab calibration

dataset is available for the training, without making any further assumptions of the

model, the LTI system based model, including the three models we discussed in

this paper, might be a reasonable, simple model to obtain a relative robust estima-

tion of the BrAC.

Out of the three methods, this paper can potentially provide a guideline for

the choice of method depending on what property people are looking for in their

particular applications. For example, if a court is more interested in an accurate

estimation of the timing of the BAC, in case of the determination of guilt of DUI,

then the ARMA-based option might be the right choice.
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