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ABSTRACT 

The goal of this work is to robustly identify common brain networks and their corresponding temporal dynamics 

across subjects in asynchronous task functional MRI (tfMRI) signals. We approached this problem using a robust and 

scalable tensor decomposition method combined with the BrainSync algorithm. We first used BrainSync algorithm to 

temporally align asynchronous tfMRI data, allowing us to study common brain networks across subjects. We mapped the 

synchronized tfMRI data into a 3D tensor (vertices × time × session) and performed a greedy canonical polyadic (CP) 

decomposition, reducing the rank to 20 in order to improve the signal-to-noise ratio (SNR). We incorporated the Nesterov-

accelerated adaptive moment estimation into our previously developed scalable and robust sequential CP decomposition 

(SRSCPD) framework and applied this improved version of SRSCPD to the rank-reduced tensor to identify dynamic brain 

networks. We successfully identified 9 brain networks with their corresponding temporal dynamics from 40 subjects using 

Human Connectome Project tfMRI data without using any prior information with regard to the task designs. Three of these 

show the subjects’ responses to cues at the beginning of each task block (fronto-parietal attentional control network, visual 

network and executive control network); one corresponds to the default mode network that exhibits deactivation during 

the tasks; four show motors networks (left hand, right hand, tongue, and both feet) where the temporal dynamics are 

strongly correlated to the task designs, and the remaining component reflects physiological noise (respiration). 

Keywords: tensor decomposition, optimization, brain network identification, fMRI 

1. INTRODUCTION 

Functional magnetic resonance imaging (fMRI) is a powerful tool for imaging in-vivo human brain activity. In 

particular, in recent years, fMRI has been used to study spatio-temporal organization through studies of functional 

connectivity (FC)1 and the manner in which brain activity changes over time during spontaneous and task related activity. 

Independent component analysis (ICA) has been widely used for dynamic brain network identification. Spatial ICA 

(sICA) finds spatially disjoint brain regions that have coherent time-series, while temporal ICA (tICA) finds independent 

temporal dynamics with possible overlapping spatial maps. Several approaches applying ICA to multi-subject fMRI data 

have been proposed. Esposito et al.2 performed ICA on each individual subject then combined the independent components 

together. Other methods differ in how data is organized/concatenated before applying ICA. Temporal concatenation3,4 

allows unique time-series for each subject but shared spatial maps, while spatial concatenation5,6 assumes common time-

series but unique spatial maps. Although meaningful components have been extracted using these ICA-based approaches7, 

they require either spatial or temporal independence, which may not be realistic as brain networks can overlap and be 
correlated in both space and time8. Further, through concatenating these data into 2D matrices prior to applying ICA, low 

rank structure that may be inherent in the natural third-order tensor representation (space × time × subject) may be lost. 

Higher-order tensor decompositions are a generalization of matrix decompositions and capable of representing multi-

dimensional data using a low rank model. Application of tensor decomposition, especially the canonical polyadic (CP) 

model9,10, to fMRI data for brain network identification have previously been explored. Generally, the decomposition is 
performed using the alternating least square (ALS) algorithm on a group-level fMRI study, to find common networks 

among subjects. For example, Andersen et al.11 applied a third-order CP decomposition to finger-tapping task fMRI 

(tfMRI) data using the ALS algorithm. Beckmann and Smith12 extended ICA to higher-order tensors by imposing an 
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independence constraint in the spatial dimension. Instead of adding an independence constraint, Sen and Parhi13 imposed 

an orthogonality constraint in the spatial dimension as with PCA. However, CP decomposition on fMRI data is not as 

popular as other methods because there are several issues that limit its applicability to fMRI studies: 

Multi-subject group analysis on asynchronous fMRI data: Temporal synchrony across multiple subjects is a strict 

requirement for CP decomposition to work well with low rank models. However, this assumption may not be satisfied 

even when an identical task design is used across all subjects, because individual responses to tasks may differ (sometimes 

significantly for higher level cognitive tasks) in their latencies. Low rank CP decompositions will certainly fail when using 

task designs that vary across subjects. Such is the case with the tfMRI data we use in the experiments below where each 

subject has two sessions of recordings with different orders of the tasks. Finally, any brain processes independent of the 

task (such as spontaneous activity in the default mode network (DMN)) will not be identified using a CP decomposition 

since subject to subject DMN activity will not be synchronized.  

Robustness against local minima and scalability to large dataset: The ALS algorithm is not guaranteed to converge 

to a global minimum or a stationary point for a CP model, even with multi-start9,10. Although adding additional constraints, 

such as independence12 or orthogonality13, may help avoid local minima, those constraints may not be physiologically 

reasonable for the brain network identification problem. Indeed, specific concerns14,15 have been raised against imposing 

those constraints when performing CP decompositions on fMRI data. Moreover, the naïve ALS algorithm does not scale 

well to large datasets. As we have shown previously16,17, the computational complexity is approximately quadratically 
proportional to the largest dimension of the tensor. In fact, most of the studies cited above heavily down-sampled the data 

in the spatial domain in order to have a tractable CP decomposition. In addition, multi-start strategies are required for 

robustness, particularly when dealing with fMRI data where the signal-to-noise ratio (SNR) is poor16,17. 

In this paper, we describe a method to robustly find common brain networks (i.e. identify both spatial maps and 

temporal dynamics simultaneously) across multiple subjects from asynchronous task fMRI data without imposing 
unrealistic constraint on the components such as independence or orthogonality. We approach this problem by 

incorporating the Nesterov-accelerated adaptive moment estimation (Nadam) method18 into our recently developed 

scalable and robust sequential canonical polyadic decomposition (SRSCPD) framework16,17, which was originally 

designed for brain network identification in EEG data, and combine it with the BrainSync19 algorithm, which uses a 

temporal orthogonal transform to align time-series across subjects. We refer to our proposed tensor decomposition 

algorithm as Nadam-accelerated scalable and robust CP decomposition (NSRCPD). 

2. PRELIMINARIES 

We first define our mathematical notation, mostly following the conventions used in Kolda and Bader9. We then 

review the ALS algorithm, the SRSCPD framework, the adaptive moment estimation (Adam) first-order solver and its 

Nesterov-accelerated version, and the BrainSync algorithm, all of which will be used in part of our NSRCPD algorithm 

and brain network identification pipeline. 

2.1 Notations 

We use a lowercase letter to represent a scalar, e.g., 𝑥; a bold lowercase letter for a vector, e.g., 𝒙; a bold uppercase 

letter for a matrix, e.g., 𝑿 and a bold script letter for a tensor, e.g., 𝓧. The number of dimensions is called the order and 

each dimension is referred to as a mode. A third-order tensor 𝓧 ∈ ℝ(×)×* will be used in the following sections as an 

example with 𝑥+,-,. denoting its individual element. However, notations and algorithms can be extended naturally to higher-

order tensors. A norm of a tensor 𝓧, analogous to the Frobenius norm for a matrix, is defined as: 

‖𝓧‖ = 12 2 2 𝑥+,-,.3*
.45

)
-45

(
+45  (1) 

A tensor can be matricized or unfolded into a matrix along the 𝑛th dimension, denoted by 𝑿(8). Therefore, for a third-

order tensor, 𝑿(5) ∈ ℝ(×)* or 𝑿(3) ∈ ℝ)×(* or 𝑿(:) ∈ ℝ*×(). The Kronecker product between matrix 𝑿 and 𝒀 is 

𝑿⊗𝒀 =
⎣⎢
⎢⎡
𝑥55𝒀 𝑥53𝒀 ⋯ 𝑥5)𝒀𝑥35𝒀 𝑥33𝒀 ⋯ 𝑥3)𝒀⋮								 ⋮ ⋱ ⋮𝑥(5𝒀 𝑥(3𝒀 ⋯ 𝑥()𝒀⎦⎥

⎥⎤ (2) 

The Khatri-Rao product between matrix 𝑿 and 𝒀 is 
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𝑿⊙𝒀 = [𝒙5⊗𝒚5 𝒙3⊗𝒚3 ⋯ 𝒙* ⊗𝒚*] (3) 

where 𝒙+ is the 𝑖th column of 𝑿. The Hadamard product 

between matrix 𝑿 and 𝒀 is 

𝑿 ∗ 𝒀 =
⎣⎢
⎢⎡
𝑥55𝑦55 𝑥53𝑦53 ⋯ 𝑥5)𝑦5)𝑥35𝑦35 𝑥33𝑦33 ⋯ 𝑥3)𝑦3)⋮								 ⋮ ⋱ ⋮𝑥(5𝑦(5 𝑥(3𝑦(3 ⋯ 𝑥()𝑦() ⎦⎥

⎥⎤ (4) 

A useful property of the Khatri-Rao product is: (𝑿⊙ 𝒀)N = (𝑿O𝑿 ∗ 𝒀O𝒀)N(𝑿⊙ 𝒀)O (5) 

where 𝑿N is the Moore-Penrose pseudo-inverse of 𝑿. 

2.2 CP Decomposition and the ALS Algorithm 

The CP decomposition approximates a third-order 

tensor 𝓧 ∈ ℝ(×)×* as a sum of rank-1 tensors with the 

following objective function: 

𝑓 = minTU,𝒂𝒓,𝒃𝒓,𝒄𝒓 	12	\𝓧 −2 𝜆_	𝒂_ ∘ 𝒃_ ∘ 𝒄_a
_45 \3 (6) 

where 𝜆_ represents the scale of the 𝑟th component, 𝒂_ ∈ ℝ(, 𝒃_ ∈ ℝ), 𝒄_ ∈ ℝ* have unit norm, “∘” represents the vector outer product and 𝑅 is the rank. If we concatenate the 𝒂_ 

together, forming a matrix 𝑨 = [𝒂5	𝒂3⋯𝒂a] ∈ ℝ(×a and similarly for 𝑩 ∈ ℝ)×a and 𝑪 ∈ ℝ*×a, then we can re-write (6) 

as one of the following three equations9: 

𝑓 = min𝑨,𝑩,𝑪 	12	g𝑿(5) − 𝑨(𝑪⊙𝑩)Ogh3 = min𝑨,𝑩,𝑪 	12	g𝑿(3) −𝑩(𝑪⊙𝑨)Ogh3 = min𝑨,𝑩,𝑪 	12	g𝑿(:) − 𝑪(𝑩⊙𝑨)Ogh3  (7) 

A regularized version of the ALS algorithm solves this problem iteratively: we first solve for 𝑨 with 𝑩 and 𝑪 fixed, then 

solve for 𝑩 with 𝑨 and 𝑪 fixed, and so on until convergence. Specifically, suppose we fix 𝑩 and 𝑪 and solve for 𝑨: 

𝑨i = argmin𝐀 	12	g𝑿(5) − 𝑨(𝑪⊙𝑩)Ogh3 + 𝜇52 𝑔5(𝑨) (8) 

where 𝑔5(𝑨) is a regularizing function on the loading matrix 𝑨 and 𝜇5 is the corresponding regularization parameter. The 

solution of (8) reduces to a least square solution if 𝜇5 = 0 and has the following expression using (5): 𝑨i = 𝑿(5)[(𝑪⊙𝑩)O]N = 𝑿(5)(𝑪⊙𝑩)(𝑪O𝑪 ∗ 𝑩O𝑩)N (9) 

In cases where 𝜇5 ≠ 0, the solution of (8) will have a close form expression if 𝑔5(𝑨) is a quadratic term but may require 

an iterative solution in other cases. The full ALS algorithm is shown in Algorithm I. 

2.3 The SRSCPD Framework 

We recently developed a SRSCPD framework for 

robust and scalable tensor decompositions of EEG data16,17. 
The robustness and scalability were achieved by using the 

results from the rank 𝑟 − 1 decomposition as a warm 

initialization for the rank 𝑟 decomposition. The generic 

SRSCPD framework is shown in Algorithm II. For a third-

order tensor example, we take a tensor 𝓧 ∈ ℝ(×)×* and a 

desired maximum rank 𝑅 as the inputs. At each iteration 𝑟, a 

rank-𝑟 fit is computed using any CP decomposition 

algorithm with initialization {𝑨∗, 𝑩∗, 𝑪∗, 𝝀∗}, which is 

formed by concatenating the result {𝑨_v5, 𝑩_v5, 𝑪_v5, 𝝀_v5} 
from the previous iteration 𝑟 − 1 with the rank-1 

approximation {𝒂w, 𝒃w, 𝒄w, 𝜆w} of the residue tensor 𝓧_xy, 
where 𝓧_xy is obtained by subtracting the reconstructed 

tensor using {𝑨_v5, 𝑩_v5, 𝑪_v5, 𝝀_v5} from the original data 

tensor 𝓧. 

ALGORITHM I: CP-ALS 

Algorithm CP-ALS (𝓧, 𝑅, {𝑨∗, 𝑩∗, 𝑪∗, 𝝀∗})	
1Initialize 𝑨 ∈ ℝ(×a , 𝑩 ∈ ℝ)×a , 𝑪 ∈ ℝ*×a , 𝝀 ∈ ℝa	
While not converged2 

  𝑨 ← argmin𝐀
12 g𝑿(5) −𝑨(𝑪⊙𝑩)Ogh3 + {|2 𝑔5(𝑨) 

  𝑩 ← argmin𝐁
12 g𝑿(3) −𝑩(𝑪⊙𝑨)Ogh3 + {~2 𝑔3(𝑩) 

  𝑪 ← argmin𝐂
12 g𝑿(:) − 𝑪(𝑩⊙𝑨)Ogh3 + {�2 𝑔:(𝑪) 

End While 

Normalize 𝑨,𝑩, 𝑪 such that each column has unit norm and 

set 𝜆_ equal to the normalization factor for the 𝑟th 

component,	𝑟 = 1,… , 𝑅. 
Return 𝑨,𝑩, 𝑪 and 𝝀 

End Algorithm 

1 The initialization is performed using random matrices if not specifically 

supplied or using the provided values {𝑨∗, 𝑩∗, 𝑪∗, 𝝀∗}. 
2 Effective convergence is defined as the point when the mean of the 

absolute difference of the loading matrices between two adjacent iterations 

over all modes is less than some small constant, e.g. 10v�. 

ALGORITHM II: SRSCPD 

Algorithm SRSCPD (𝓧, 𝑅) 𝒂5 , 𝒃5, 𝒄5, 𝜆5 ← CP-Algorithm (𝓧, 1) 𝓧_xy ← 𝓧− Tensor_Recon (𝒂5, 𝒃5, 𝒄5, 𝜆5) 𝒂w , 𝒃w, 𝒄w, 𝜆w ← CP-Algorithm (𝓧_xy, 1) 

𝑨∗ ← [𝒂5	𝒂w]; 𝑩∗ ← [𝒃5	𝒃w]; 𝑪∗ ← [𝒄5	𝒄w]; 𝝀∗ ← �𝜆5𝜆w � 
For 𝑟 = 2, 3,… , 𝑅 𝑨_ , 𝑩_, 𝑪_ , 𝝀_ ← CP-Algorithm (𝓧, 𝑟, {𝑨∗, 𝑩∗, 𝑪∗, 𝝀∗}) 𝓧_xy ← 𝓧− Tensor_Recon (𝑨_ , 𝑩_, 𝑪_ , 𝝀_) 𝒂w , 𝒃w, 𝒄w, 𝜆w ← CP-Algorithm (𝓧_xy, 1) 

𝑨∗ ← [𝑨_	𝒂w]; 𝑩∗ ← [𝑩_ 	𝒃w]; 𝑪∗ ← [𝑪_ 	𝒄w]; 𝝀∗ ← �𝝀_𝜆w � 
End For 

Return a set of solutions {𝒂5, 𝒃5, 𝒄5 , 𝜆5}, {𝑨3, 𝑩3, 𝑪3, 𝝀3}, … , {𝑨a , 𝑩a, 𝑪a, 𝝀a} 
End Algorithm 
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2.4 Gradient of the CP Model, Adam and Nadam 

If we treat the variables in a CP model as a high-

dimensional vector lying in the space 𝒙 ∈ ℝ�, where 𝑁 =𝐼 × 𝑅 + 𝐽 × 𝑅 + 𝐾 × 𝑅, i.e., 𝒙 represents the vectorized 

loading matrices stacked together, then the objective 

function 𝑓(𝑨,𝑩, 𝑪) in (6) and (7) can be thought of as a 

scalar-valued cost function 𝑓(𝒙):ℝ� → ℝ. Therefore, the 

solutions can be obtained using any optimization-based 
approach, which typically requires computation of the 

gradients. The partial gradient of the objective function 𝑓 

with respect to the loading matrix 𝑨, without any 

regularization, is: 

∇𝑨𝑓 = −𝑿(5)(𝑪⊙𝑩) + 𝑨	(𝑪O𝑪 ∗ 𝑩O𝑩) (10) 

and like-wise for 𝑩 and 𝑪. Proof and detailed derivations are 
given in 20. A gradient-based search on the unregularized 

cost function will not produce a unique solution because all solutions in the form of {𝜂5𝑨, 𝜂3𝑩, 𝜂:𝑪} with 𝜂5𝜂3𝜂: = 1 are 

equivalent9. Therefore, a regularization term needs to be added. This is achieved here using the Tikhonov regularizer: 

𝑨i = argmin𝐀
12 g𝑿(5) − 𝑨(𝑪⊙𝑩)Ogh3 + 𝜇52 ‖𝑨‖h3 	 (11) 

and similarly for 𝑩 and 𝑪, which encourages the norms of the factors to be equally spread. In this regularized case, the 

corresponding gradient becomes20: ∇𝑨𝑓 = −𝑿(5)(𝑪⊙𝑩) + 𝑨	(𝑪O𝑪 ∗ 𝑩O𝑩) + 𝜇5𝑨 (12) 

and like-wise for 𝑩 and 𝑪.  

Adam21 is a popular first-order solvers used in the deep learning community22. The superior performance of Adam 

was achieved by using momentum-based acceleration together with an adaptive learning rate. Recently, Dozat18 described 

a modified algorithm, Nadam, in which Nesterov acceleration is incorporated into Adam. The update rules for Nadam are 

shown in Algorithm III, where 𝑓(𝒙) is a scalar-valued objective function of 𝒙, 𝒙� is the initial starting point, 𝛼 is the global 

learning rate, 𝛽5 and 𝛽3 are the decay rates for the first moment 𝒎� and second moment 𝒗�, respectively, and 𝜖 is a small 

constant avoiding division by zero. The default values for these parameters are 𝛼 = 0.001, 𝛽5 = 0.9, 𝛽3 = 0.999 and 𝜖 =10v� per 21. Detailed derivations are shown in 18,22. 

2.5 BrainSync 

Functional MRI time series from two different subjects, or even two different sessions, are often not directly 

comparable. This is clearly the case for resting fMRI studies in which spontaneous activity varies over subjects and time. 

Even in event-related studies, brain activity can vary due to differing latencies in response and variations in underlying 

brain states at the time a stimulus is given. But to perform group analysis or decomposition based directly on temporal 

data, temporal synchronization across subjects is necessary. We recently developed a synchronization technique for fMRI 

data called BrainSync that addresses this problem19. We summarize the methodology below. 

BrainSync assumes that the fMRI data between any two subjects or sessions have been mapped onto a tessellated 

representation of the mid-cortical layer of the cortex and non-rigidly aligned and resampled onto a common mesh. Let 𝑿 

and 𝒀 be the matrices representing the cortically mapped fMRI data for two subjects, each of size  𝑇 × 𝑉, where 𝑇 is the 

number of time points and 𝑉 is the number of vertices with 𝑉 ≫ 𝑇, which is typically true in fMRI data. BrainSync finds 

an orthogonal transform 𝑶� that minimize the overall squared error: 

𝑶� = argmin𝑶∈𝑶(O) ‖𝑿 − 𝑶𝒀‖3 (13) 

where 𝑶(𝑇) represents the group of 𝑇 × 𝑇 orthogonal matrices. 

The problem is well-posed given the fact that 𝑉 ≫ 𝑇 and can be 

solved using the Kabsch algorithm23. The BrainSync algorithm is 

shown in Algorithm IV, where svd(𝑿) represents the singular 

value decomposition of a matrix 𝑿. A group version of BrainSync 

is described in an accompanying paper in this proceeding24. 

ALGORITHM IV: BRAINSYNC 

Algorithm BrainSync (𝑿, 𝒀) 𝑼𝚺𝑽 = svd(𝑿𝒀O)  𝑶� = 𝑼𝑽O  

Return 𝑶� 

End Algorithm 

 

ALGORITHM III: NADAM 

Algorithm Nadam (𝑓(𝒙),	𝒙�, 𝛼, 𝛽5, 𝛽3, 𝜖) 𝑚� ← 0, 𝑣� ← 0, 𝑡 ← 0  

Initialize 𝛼, 𝛽5, 𝛽3, 𝜖 using default values if not provided 
While not converged 

 𝑡 ← 𝑡 + 1 

 𝑔� ← ∇𝐱𝑓(𝒙�v5) 
 𝒎� ← 𝛽5𝒎�v5 + (1 − 𝛽5)𝒈� 
 𝒗� ← 𝛽3𝒗�v5 + (1 − 𝛽5)𝒈�3 

 𝒎© � ←𝒎� (1 − 𝛽5�)⁄  

 𝒗©� ← 𝒗� (1 − 𝛽3�)⁄  

 𝒙� ← 𝒙�v5 − «¬𝒗©®¯ °𝛽5	𝒎© � + (5v±|)𝒈5v±| ² 
End While 

Return 𝒙� 
End Algorithm 
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3. MATERIALS AND METHODS 

3.1 NSRCPD 

We have developed a Nesterov accelerated scalable and robust sequential CP decomposition (NSRCPD) algorithm 

which incorporates Nadam into the SRSCPD framework16,17. As with SRSCPD, for each rank, NSRCPD uses warm 

initializations from lower rank solutions to improve its scalability and robustness. However, unlike SRSCPD, where for 

each rank the solutions were obtained using the ALS algorithm, NSRCPD uses Nadam to update all modes simultaneously. 

It has been shown that the optimization-based CP algorithms are more robust than ALS but at the expense of a higher 

computational cost9,10, making them expensive to scale to large datasets. Incorporating Nadam into the SRSCPD 

framework allows us to further improve the robustness relative to ALS without sacrificing scalability. 

The full NSRCPD algorithm is shown in Algorithm V. It is built on the SRSCPD framework (Algorithm II). We use 

CP-ALS (Algorithm I) to solve any rank-1 decomposition, including the first rank-1 approximation to the data tensor and 

all of the following rank-1 fits to the current residue. We use Nadam (Algorithm III) to solve the main decomposition 

problem at each rank from 2 to the desired maximum rank 𝑅 with warm initializations {𝑨∗, 𝑩∗, 𝑪∗}, where 𝑓 in line 7 is 

the Tikhonov regularized objective with gradient with respect to 𝑨 shown in (12), with similar forms for 𝑩 and 𝑪. Note 

that the components returned from the ALS algorithm have unit norms and the normalization factors are stored in 𝝀 while 
Nadam optimizes all (non-normalized) components simultaneously. Therefore, in order to have Nadam start from the 

correct warm initialization point, we normalize and then re-scale the components before and after the Nadam procedure 

as shown in lines 8 and 6 respectively. 

3.2 Simulation 

We simulated third-order tensors 𝓧 ∈ ℝ3�×5�×� of ranks	𝑅 = 1,…10 from the outer product of factors randomly 

sampled from a standard normal distribution. We then added Gaussian white noise to the simulated tensor 𝓧 with a SNR 

of 2. We performed a CP decomposition with desired rank 𝑅 on 𝓧 using the ALS algorithm, the original SRSPCD 

algorithm (with the ALS solver internally), and the NSRCPD algorithm. For a fair comparison, we generated and used the 

same random initializations for all three algorithms. We assessed the quality of the solutions using the averaged congruence 

product (ACP)25 (we have previously shown that this metric is superior to the Frobenius norm error17 in quantifying the 

ability of tensor decompositions to correctly identify multiple components in a low rank tensor decomposition). ACP is a 

measure of correlation between components defined as 

ACP = max𝐏 tr((𝑨O𝑨i) ∗ (𝑩O𝑩i) ∗ (𝑪O𝑪i)	𝑷) (14) 

where 𝑨,𝑩, 𝑪 are the column-wise normalized ground truth loading matrices, 𝑨i,𝑩i, 𝑪i their estimated counterparts, 𝑷 is a 

permutation matrix accounting for the ambiguity of the ordering of the solutions26 and tr(𝑿) indicates the trace of 𝑿. We 

evaluated the ACP of the solutions for each of the three methods as a function of the rank R. For each rank 𝑅 we ran 100 

Monte Carlo trials and the corresponding boxplots were generated. 

ALGORITHM V: NSRCPD 

s Algorithm NSRCPD (𝓧, 𝑅) 

1  𝒂5, 𝒃5, 𝒄5, 𝜆5 ← CP-ALS (𝓧, 1) 

2  𝓧_xy ← 𝓧− Tensor_Recon (𝒂5, 𝒃5, 𝒄5, 𝜆5) 

3  𝒂w, 𝒃w, 𝒄w, 𝜆w ← CP-ALS (𝓧_xy, 1) 

4  𝑨∗ ← [𝒂5	𝒂w]; 𝑩∗ ← [𝒃5	𝒃w]; 𝑪∗ ← [𝒄5	𝒄w]; 𝝀∗ ← �𝜆5𝜆w � 
5  For 𝑟 = 2, 3,… , 𝑅 

6   Scale the 𝑖th components of 𝑨∗, 𝑩∗, 𝑪∗ by ¬𝝀+∗� 	 
7   𝑨_ , 𝑩_ , 𝑪_ ← Nadam (𝑓, {𝑨∗, 𝑩∗, 𝑪∗}) 
8   Normalize the 𝑖th components of 𝑨_ , 𝑩_ , 𝑪_ and store the norm product into 𝝀+_ 

9   𝓧_xy ← 𝓧− Tensor_Recon (𝑨_ , 𝑩_ , 𝑪_ , 𝝀_) 

10   𝒂w, 𝒃w, 𝒄w, 𝜆w ← CP-ALS (𝓧_xy, 1) 

11   𝑨∗ ← [𝑨_	𝒂w]; 𝑩∗ ← [𝑩_	𝒃w]; 𝑪∗ ← [𝑪_	𝒄w]; 𝝀∗ ← �𝝀_𝜆w � 
12  End For 

13  Return a set of solutions {𝒂5, 𝒃5, 𝒄5, 𝜆5}, {𝑨3, 𝑩3, 𝑪3, 𝝀3}, … , {𝑨a , 𝑩a , 𝑪a , 𝝀a} 
e End Algorithm 
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3.3 In-vivo motor tfMRI data 

40 subjects (2 sessions for each subject) of minimally processed motor tfMRI data27, represented in the grayordinate 

format28, from the Human Connectome Project (HCP)29 were used. The cortical data on each hemisphere were further 

downsampled, by a factor of 3, onto an approximately 11𝐾 tessellated surface for computational tractability. Each session 

was represented as a 𝑉 × 𝑇 matrix, where 𝑉 ≈ 22𝐾 is the number of vertices on both hemispheres and 𝑇 = 284 is the 

number of time points. Note that the order of presentation of the cues (hand/foot/tongue) varied across subjects and 

sessions. We therefore applied the BrainSync algorithm to align all sessions of tfMRI datasets to the first session of the 

first subject (this reference subject is 100307 given by HCP by default). The temporally aligned tfMRI data were then 

combined in a third-order data tensor 𝓧 ∈ ℝ½×O×�, where 𝑆 = 80 is the total number of subjects (40) by sessions (2). 

Analogous to PCA in matrix cases, we performed a greedy CP decomposition20 to the tensor 𝓧 to reduce its rank to 

20. Specifically, we recursively fit a rank-1 component to the data tensor and then subtracted this from the residual data 

tensor until we had found 20 components in total. Let 𝒂+ ∈ ℝ½ , 𝒃+ ∈ ℝO , 𝒄+ ∈ ℝ� be the 𝑖th normalized spatial, temporal 

and session component found by the greedy CP decomposition and 𝜆+ be the corresponding norm. Then we reconstructed 

the rank-reduced tensor as 𝓨 = ∑ 𝜆+	𝒂+ ∘ 𝒃+ ∘ 𝒄+3�+45 . This dimensionality reduction step was necessary to improve the SNR 

of the data. Next, we applied the NSRCPD algorithm to the rank-reduced tensor 𝓨 to extract brain networks with a desired 

rank of 20 and a non-negativity constraint on the session mode since we assumed each subject could either participate or 

not participate in a network but could not negatively contribute to the network. Specifically, we used (11) for the spatial 

and temporal mode and the following objective function for the session mode within the Nadam update 

𝑪i = argmin𝐂
12g𝑿(:) − 𝑪(𝑩⊙𝑨)Ogh3 + 𝜇2 ‖𝑪‖h3 , s. t.		𝑪 ≽ 0 (15) 

where ≽ represents the element-wise inequality, the regularization parameter 𝜇 was chosen to be 0.001 empirically based 

on the data for all three modes. Finally, the identified components were manually inspected and combined if they were 

recognized as sub-networks of a known network. 

4. RESULTS 

4.1 Simulation 

Fig. 1 shows the boxplots of the ACP over 100 trials as a function of the rank 𝑅 for each of the three methods: ALS, 

SRSCPD with ALS solver, and NSRCPD. When 𝑅 is small, they perform almost equally well. However, as 𝑅 increases, 

NSRCPD outperforms the SRSCPD with ALS solver as well as the original ALS algorithm by a margin that increases 

with rank, indicating robustness of the NSRCPD algorithm. 

 
Figure 1: Simulation results. Boxplots of ACP over 100 Monte Carlo trials are shown as a function of rank 𝑅. 
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4.2 In-vivo motor task fMRI data 

Fig. 2 shows 9 brain networks identified by the NSRCPD method. For each network, the left column shows the spatial 

map and the right column shows the dynamic temporal variations overlaid with the color-coded task design blocks (see 

caption and legend) for the reference subject. 

 
Figure 2: NSRCPD results on motor tfMRI data. For each component, the spatial map is shown on the left with the temporal dynamics 
on the right. (a) Frontal-parietal attentional control network (FPACN); (b) Default mode network (DMN); (c) Visual network (VN); 
(d) Respiration activity (Resp); (e) Executive control network (ECN); (f) Left hand (LH); (g) Right hand (RH); (h) Tongue (T); (i) Both 
feet (F). 
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The temporal dynamics of (a), (c) and (e) show clear peaks at the beginning of each task block, which visually correlate 

well with the cues for each task, with a short delay consistent with the effects of the hemodynamic response function. The 

spatial pattern of these networks indicates a fronto-parietal attentional control network (FPACN)30 for (a); a visual network 

(VN) for (c) and an executive control network (ECN)31 for (e), all reflecting the subjects’ responses to the task cues. 

The spatial map for (b) shows a very conventional and typical DMN. The DMN was first known as a task-negative 

network32 and in fact a strong negative correlation between the temporal mode of (b) and the task blocks can be clearly 

observed (dips within task blocks and peaks in between task blocks). Note that it is the synchronization of spontaneous 

(non-task-related) activity across subjects using BrainSync that allows us to identify these components from the third-

order tensor in addition to the task-related networks. 

Fig. 2 (d) shows a spatially global, temporally relatively fast (~0.3Hz) and non-task-related activity, suggesting that 

it may represent a residual respiration (Resp) effect common (again after BrainSync synchronization) across subjects. The 

last 4 networks in Fig. 2 (f) – (i) correspond to clear motor activity for left hand (LH), right hand (RH), tongue (T) and 

both feet (F), that can be verified by inspection of their spatial modes. However, individual networks for left foot and right 

foot were not separated. 

5. CONCLUSION 

Using NSRCPD with BrainSync, we identified 9 spatially overlapped and temporally correlated common networks 

across multiple subjects: seven task-related (related to visual cues, attentional and executive control, and motor activity) 

networks, the DMN, and one corresponding to physiological noise (respiration) in tfMRI data. Although we did not use 

any prior information regarding the task designs, our results not only replicated the task timing, but also showed expected 

differences in the temporal dynamics of FPACN, DMN, ECN, visual and motor networks. Further, the use of BrainSync 

synchronization allows us to extract the DMN, and the effects of it on the motor task, jointly across subjects. 
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