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A B S T R A C T

Characterizing functional brain connectivity using resting functional magnetic reso-

nance imaging (fMRI) is challenging due to the relatively small Blood-Oxygen-Level

Dependent contrast and low signal-to-noise ratio. Denoising using surface-based

Laplace-Beltrami (LB) or volumetric Gaussian filtering tends to blur boundaries be-

tween different functional areas. To overcome this issue, a time-based Non-Local

Means (tNLM) filtering method was previously developed to denoise fMRI data while

preserving spatial structure. The kernel and parameters that define the tNLM filter need

to be optimized for each application. Here we present a novel Global PDF-based tNLM

filtering (GPDF) algorithm that uses a data-driven kernel function based on a Bayes

factor to optimize filtering for spatial delineation of functional connectivity in resting

fMRI data. We demonstrate its performance relative to Gaussian spatial filtering and the

original tNLM filtering via simulations. We also compare the effects of GPDF filtering

against LB filtering using individual in-vivo resting fMRI datasets. Our results show

that LB filtering tends to blur signals across boundaries between adjacent functional

regions. In contrast, GPDF filtering enables improved noise reduction without blurring

adjacent functional regions. These results indicate that GPDF may be a useful prepro-

cessing tool for analyses of brain connectivity and network topology in individual fMRI

recordings.

c© 2019 Elsevier B. V. All rights reserved.

1. Introduction

Functional MRI (fMRI) is a powerful in-vivo neuroimaging

modality that allows us to indirectly infer information about

the neuronal activity of the brain by measuring Blood-Oxygen-

Level Dependent (BOLD) signal fluctuations (Ogawa et al.,

1990). Temporal correlations in resting fMRI (rfMRI) BOLD

signals across multiple spatially distinct brain areas are often

∗Corresponding author:

e-mail: jli981@usc.edu (Jian Li)

used to define functional brain networks (Smith et al., 2009).

However, BOLD signals inherently have low signal-to-noise ra-

tio (SNR). Preprocessing of fMRI data often includes a spatial

smoothing step to reduce noise. Isotropic 3D Gaussian filter-

ing is the most commonly used approach to smooth volumetric

rfMRI data (Smith et al., 2013), or equivalently, Laplace Bel-

trami (LB) smoothing is applied when the data is mapped onto

a 2D representation of the cortical surface (Angenent, 1999).

Both methods suffer from a critical common problem: they spa-

tially mix signals along the borders between adjacent functional

regions (Bhushan et al., 2016), limiting our ability to accurately

identify connectivity at the micro-to-meso scale in individual
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fMRI recordings.

Non-local means (NLM) filtering is an edge-preserving

method originally designed for natural image denoising

(Buades et al., 2005) and more recently adapted for anatomical

MRI (Manjon et al., 2008; Coupe et al., 2008), fMRI (Bernier

et al., 2014) and diffusion MRI (Wiest-Daessle et al., 2008) to

preserve spatial structure in imaging data. We recently devel-

oped a variant for filtering rfMRI data called temporal NLM

(tNLM) that assigns non-local smoothing kernel weights based

on temporal similarities between time series rather than spatial

similarities (Bhushan et al., 2016). We demonstrated tNLM fil-

tering’s ability to reduce noise by using (weighted) averages of

only those times series that are similar, thus minimizing blur-

ring across functional boundaries.

Here we identify two key challenges in using tNLM filter-

ing as described in Bhushan et al. (2016). First, the exponential

kernel function used in computing the weights is chosen heuris-

tically. The exponent is an affine function of the sample correla-

tion between the two time-series. As we show below, this func-

tion does not perform well in terms of optimizing the trade-off

between the application of large weights when the correlations

are high and smaller (or near zero) weights for low correlations.

A second issue is that almost all NLM-based filtering methods,

including tNLM, have been applied over a restricted neighbor-

hood around the point to be filtered, partially because of the

high computational cost if they are applied globally. However,

since networks span the entire brain, global rather than local

filtering has the potential for improved results when filtering

using tNLM. It has been suggested previously that the brain has

the structure of a small-world network (Bullmore and Sporns,

2009) and therefore most “nodes” (or voxels) in the brain are

not strongly correlated with each other. As a result, when fil-

tering a particular node using data from the entire brain, the

fraction of uncorrelated nodes is much larger than the portion

of correlated nodes. This can result in an undue influence of

uncorrelated nodes if the filter weights applied to these nodes

are not sufficiently suppressed. We address each of these issues

in the methods described below.

Here we propose Global PDF-based tNLM filtering (GPDF):

a new kernel function for tNLM filtering of fMRI data based

on the probability density function (PDF) of the correlation of

the time series between pairs of voxels. This method enables us

to perform global filtering with improved noise reduction while

minimizing blurring of adjacent functional regions.

An outline and some preliminary results of the approach de-

scribed here have been previously reported (Li et al., 2018).

The current paper provides a more detailed description of the

method and novel experimental results to demonstrate its per-

formance.

2. Method

2.1. NLM-based Filtering and tNLM

Let’s assume the fMRI data are represented on a 2D tessel-

lation of the mid-cortical surface with V vertices and T time

samples for each vertex. Let s(i, t) be the time series at vertex

i ∈ V and time t ∈ T . Let S i be the set of vertices that are used

to compute the filtered signal at vertex i. In the tNLM method,

S i contains vertex i and all its k-hop neighboring vertices, for

some k > 0. Then tNLM filtering is defined as

s′(i, t) =
1

∑

j∈S i
w(i, j)

∑

j∈S i

s( j, t)w(i, j) (1)

where the weight w(i, j) is chosen to be a temporal similarity

measure and defined as a function of the sample correlation

(Bhushan et al., 2016):

w(i, j) = f (r(i, j); h) (2)

ftNLM(r; h) = exp

(

−2(1 − r)

h2

)

(3)

where r(i, j) is the Pearson correlation coefficient between ver-

tices i and j and h is the parameter that controls the degree of

filtering.

2.2. Global PDF-based tNLM Filtering

GPDF filtering differs from tNLM in the following two ways:

(i) the spatial range over which the filtered signal is computed:

in GPDF the set S i = S ,∀i, where S contains all vertices on the

tessellated brain surface instead of just a local neighborhood;

(ii) we use a different kernel function f in Equation (2).

2.2.1. GPDF Kernel Formulation

Let the observed signal be xi = si + ni at vertex i, a superpo-

sition of the true signal si and noise ni. Assume that si and ni

are independent with si ∼ N(0, σ2
si

) and ni ∼ N(0, σ2
ni

). Also

assume some non-zero correlation between si and s j if i and j

are within the same functional network (H1) and zero correla-

tion if they are in different networks (H0). Then the correlation

between two observed signals is:

ρi j =
E [xix j]

σxi
σx j

=
E [sis j]

√

(σ2
si
+ σ2

ni
)(σ2

s j
+ σ2

nj
)

=







































0 ,H0 :
E [sis j]

σsi
σs j

= 0

σsi
σs j

c
√

(σ2
si
+ σ2

ni
)(σ2

s j
+ σ2

nj
)

,H1 :
E [sis j]

σsi
σs j

= c

(4)

where c ∈ [−1, 0) ∪ (0, 1] represents some non-zero cor-

relation between true signals and σxi
=

√

(σ2
si
+ σ2

ni
) rep-

resents the standard deviation (SD) of xi. If we let K =

σsi
σs j
/

√

(σ2
si
+ σ2

ni
)(σ2

s j
+ σ2

nj
) ∈ [0, 1] be the SNR-dependent

scalar in Equation (4) under H1, then ρi j = Kc. Therefore,

ρi j −→ 0 when K −→ 0 (low SNR case) and ρi j −→ c when K −→ 1

(high SNR case). To further help avoid numerical issues and

improve the robustness of the algorithm described below, we

formulate our hypothesis in a slightly relaxed form:

ρi j =
E [xix j]

σxi
σx j

∈














[−δ, δ] ,H0

[−1,−δ) ∪ (δ, 1] ,H1

(5)
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where δ is a small positive constant. The sample correlation

distribution is given by the following (Fisher, 1915):

P(r|ρ; T ) =
(T − 2)Γ(T − 1)(1 − ρ2)

T−1
2 (1 − r2)

T−4
2

√
2πΓ(T − 1

2
)(1 − ρr)T− 3

2

× 2F1(
1

2
,

1

2
,

2T − 1

2
,
ρr + 1

2
)

(6)

where T is the number of samples and 2F1(a, b; c; z) is the

Gaussian hypergeometric function. The parameter T will be

omitted in the following derivation as for a given fMRI dataset,

T is a fixed constant.

Figure 1: Histograms of the correlations under H1 (blue) and H0 (red) generated

from simulated data overlaid with tNLM kernel functions for different param-

eter h (dotted) and GPDF kernel function with optimized parameter h (black

solid).

An example is shown in Fig. 1 where ρ = 0.2 under H1 (blue

curve) and ρ = 0 under H0 (red curve). The histograms of the

sample correlations are distributed about their means according

to Equation (6) due to the finite number of samples. This causes

a significant overlap between the red and blue curves. There is

therefore a range of nonzero correlation values over which it is

difficult to distinguish H1 from H0 given an observed sample

correlation r. But to perform well, tNLM should attach large

weights only to those time series for which H1 is true.

In Fig. 1, we show the shape of the original tNLM kernel de-

fined in Equation (3) as a function of h (dotted color curves).

The figure shows that the kernel performs a poor job in dif-

ferentiating H1 from H0 in the sense that applying significant

weights for H1 also results in weights significantly greater than

zero for H0. The black curve shows an alternative kernel that,

visually at least, does a better job of giving significantly larger

weights to H1 while minimizing those for H0. We now describe

how we select this kernel and then evaluate its performance.

Bayes theorem tells us the posterior probability of ρ given r

is

P(ρ|r) =
P(r|ρ)P(ρ)
∫

P(r|ρ)P(ρ)dρ
(7)

To better differentiate H1 from H0, we take the ratio between the

integrated posterior probability under H1 and the counterpart

under H0 (using the estimated priors described below), forming

the Bayes factor (Kass and Raftery, 1995)

R(r) =

∫

ρ∈H1
P(r|ρ)PH1

(ρ)dρ
∫

ρ∈H0
P(r|ρ)PH0

(ρ)dρ
(8)

where R(r) ∈ [0,∞). The larger R(r), the more likely ρ belongs

to H1 given that sample correlation r. The constant δ, which

separates H1 from H0 in Equation (5), was chosen such that the

center area under the theoretical null hypothesis distribution is

approximately 0.5, i.e.,
∫ δ

−δ P(r|ρ = 0; T )dr ≈ 0.5, for both the

simulation and the real data experiments below.

We then reformulate our kernel function f to be

fGPDF(r; h) = 1 − exp

(

−R(r)

h2

)

(9)

where, similar to the tNLM kernel in Equation (3), h is a param-

eter that controls the degree of smoothing. Replacing the sam-

ple correlation in Equation (3) with the Bayes factor in Equa-

tion (8) introduces the strong nonlinearity visible in the black

curve in Fig. 1. This nonlinearity accounts for the fact that the

posterior probability of H1 vs H0 can change rapidly as a func-

tion of r, as reflected in the Bayes factors.

2.2.2. Automated Parameter Selection

In addition to using a different kernel, we also propose an

automated method for selecting the parameter h. An optimized

parameter h for tNLM filtering is crucial because (i) the filtering

effect is very sensitive to the selection of h as shown in Li and

Leahy (2017); (ii) GPDF filtering uses a data-dependent kernel

so that the parameters can vary substantially as different scan-

ning protocols may have different time series duration and phys-

iological noise sensitivity. Let PH1
(r) =

∫

ρ∈H1
P(r|ρ)PH1

(ρ)dρ

be the marginal probability of r under H1 (using the estimated

prior described below) and PH0
(r) similarly defined under H0.

To select the best parameter, we maximize the expected value of

the weighting function fGPDF(r; h) with respect to PH1
(r) while

controlling the mean value with respect to PH0
(r). Specifically,

ĥ = argmax
h

E PH1
(r)[ fGPDF(r; h)]

s.t. E PH0
(r)[ fGPDF(r; h)] ≤ α

(10)

where E PHi
(r)[ fGPDF(r; h)] =

∫

fGPDF(r; h)PHi
(r)dr, i = 0, 1 and

α is the expected weight under H0, analogous to the false pos-

itive rate in detection theory. Although α is another parameter

we need to tune manually, it is more meaningful and robust than

h, because choosing the same α will generally yield similar fil-

tering results across different datasets while the internal param-

eter h can have a very different impact as a function of the noise

level, range of correlation values and size of the image being

filtered. We recommend that α be set conservatively, e.g. 10−3

or smaller, due to the dominant fraction of uncorrelated vertices

(H0) in an fMRI dataset.

2.2.3. Estimation of the Population Correlation

Distribution

In order to construct the kernel function in Equation (9) we

need to know the Bayes factor R(r) in Equation (8), which

requires the conditional distribution P(r|ρ) and the population

correlation distribution PHi
(ρ), i = 0, 1. The sample correlation

density P(r|ρ) has the analytical solution given in Equation (6).
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(a) (b)

Figure 2: (a) Parcellation result of simulated data represented as a V × V matrix for each method and each hemisphere. The columns represent different filtering

methods indicated by their titles along upper row. The rows represent the two hemispheres; (b) The estimated prior distribution of the population correlation P̂(ρ)

under perfect within-block correlation setting (c = 1 and ρ = 0.284 in Equation (4)) .

Therefore, we need only estimate PHi
(ρ), i = 0, 1. According

to Equation (5), we assume no overlap between PH1
(ρ) and

PH0
(ρ), i.e., PH1

(ρ) = 0 for ρ ∈ [−δ, δ] and PH0
(ρ) = 0 for

ρ ∈ [−1,−δ) ∪ (δ, 1]. Let P(ρ) = PH1
(ρ) + PH0

(ρ) and P(r) be

the empirical sample correlation distribution obtained from the

fMRI data. Let P′(r) ∈ R
M , P′(r|ρ) ∈ R

M×N and P′(ρ) ∈ R
N

be the discretized version of the corresponding variables in the

continuous space, respectively. Then PH1
(ρ) and PH0

(ρ) can be

jointly estimated using a linear regression with non-negativity

constraints:

P̂′(ρ) = argmin
P′(ρ)

∥

∥

∥

∥

∥

∥

∥

P′(r) −
∑

ρ

P′(r|ρ)P′(ρ)

∥

∥

∥

∥

∥

∥

∥

2

l2

, s.t.P′(ρ) � 0 (11)

This optimization is a well-posed problem as long as M ≥ N,

i.e., the discretization step for r is smaller than that for ρ, which

can be achieved easily. Our choice of step size of 0.001 for r

and 0.01 for ρ results in stable estimates in all simulation and

real data experiments below. Also, this problem can be solved

efficiently using the fast non-negative least squares method (Bro

and De Jong, 1997). Finally, P′
H0

(ρ) and P′
H1

(ρ) can be obtained

as follows:

P′H0
(ρ) =















P′(ρ), ρ ∈ [−δ, δ]
0, ρ ∈ [−1,−δ) ∪ (δ, 1]

P′H1
(ρ) =















0, ρ ∈ [−δ, δ]
P′(ρ), ρ ∈ [−1,−δ) ∪ (δ, 1]

(12)

2.2.4. GPDF Filtering Algorithm

We summarize GPDF filtering algorithm as follows:

Algorithm I GPDF filtering

1: Given fMRI data X ∈ R
V×T , calculate the correlation

matrix A = XX
T ∈ RV×V

2: Estimate P′(r) from the histogram of the elements of A

3: Estimate the priors by solving Equation (11)

4: Compute the Bayes factor in Equation (8)

5: Optimize the parameter h by solving Equation (10)

6: Construct the kernel using Equation (9)

7: Finally filter the signal using Equation (1)

Note that although the GPDF algorithm is presented and de-

rived using data represented on a 2D tessellated surface, it can

be generalized to any time series data, such as 3D volumetric

fMRI data or a mix of surface and volumetric data (e.g. the

grayordinate representations used in the Human Connectome

Project (HCP) (Van Essen et al., 2013) dataset).

3. Experiments and Results

3.1. Simulation

We simulated a “brain surface” tessellation as two 2D blocks

of size V × V (V = 32) representing left and right hemispheres.

Each point in each block represents a vertex on the brain sur-

face and has a label indicating which network it belongs to.

Figure 2 (a) shows the ground truth label blocks where each

color represents a distinct network. The top and bottom rows

have identical labels to simulate connections between the left

and right hemispheres (in total K = 16 unique labels). For

each label, we generated a random time series (white noise)

of length T = 200 where points within the same labels were

given identical time series (perfectly correlated) in the absence

of additional noise. Points with different labels were given time

series with zero correlation indicating that they belong to differ-

ent networks. We then added Gaussian white noise with SNR

= 0.4 to the entire dataset.

To investigate the effects of different filtering methods, we

applied filtering to the simulated data then parcellated the data

into K labels using the Normalized Cuts (NCuts) algorithm (Shi

and Malik, 2000). A stable matching algorithm (Gale and Shap-

ley, 2013) was applied to match labels between different results

for easy comparison. Figure 2 (a) shows the parcellation results

for: Gaussian filtering with full-width-half-maximum (FWHM)

approximately 8 points (column 2); tNLM filtering with op-

timized h parameter (Li and Leahy, 2017) (column 3 and 4);

local and global PDF filtering (column 5 and 6). To demon-

strate the difference between local filtering and global filtering,

we applied the tNLM filtering and PDF filtering both locally

(column 3 and 5) and globally (column 4 and 6). Local filtering

processed left and right hemispheres separately while global fil-

tering processed them jointly.
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Gaussian spatial filtering generated labels along the bound-

aries between true labels not seen in the ground truth. This

is most likely due to blurring of uncorrelated but neighboring

vertices. In contrast, tNLM and both local and global PDF fil-

tering methods preserved the blocky structures. However, both

PDF methods yielded much cleaner results than tNLM because

tNLM has a larger contribution from the uncorrelated vertices

at each filtered point as discussed above. Note that for both

PDF methods and tNLM the parameter h had been optimized,

in the latter case using Li and Leahy (2017), to achieve the best

trade-off. Finally, for both tNLM and PDF, local filtering re-

sulted in labels that were mismatched between the left and right

hemispheres. The myopic perspective of local filtering failed to

detect the distal, especially inter-hemispheric, connections. In

contrast, GPDF was able to correctly identify inter-hemispheric

connections and label appropriately.

Quantitatively, we ran this simulation for 100 Monte Carlo

trials and calculated the Adjusted Rand Index (ARI) (Rand,

1971) between each parcellation result and the ground truth as a

filtering performance measure. The medians of the ARIs were

0.547, 0.701, 0.760, 0.750, and 0.969 respectively in correspon-

dence to each filtering method in Fig. 2 (a) column 2 - 6, in-

dicating that GPDF outperformed other filtering methods by a

significant margin.

Furthermore, GPDF not only produced the best clustering re-

sults among all filtering methods, but also correctly estimated

the population correlation from the data. Figure 2 (b) shows the

estimated distribution of the prior population correlation P̂(ρ)

using Equation (11) under this perfect within-block correlation

setting. The results show that the estimated prior P̂(ρ), that

contains the union of PH0
(ρ) and PH1

(ρ) as described above,

has a bimodel distribution with two peaks, one at zero (corre-

sponding to the zero between-block correlations) and another at

0.29 (corresponding to the non-zero within-block correlations),

which matches very well with the simulated priors (c = 1 and

ρ = 0.284 under H1 in Equation (4)).

Similar phenomena can be observed when nodes are partially

correlated (c < 1 in Equation (4)) within each block without the

presence of additional noise. The results for partial correlation

c = 0.25, 0.5 and 0.75 with the same T = 200 and SNR = 0.4

are shown in the supplementary materials.

To investigate the robustness of GPDF over a variety of sim-

ulated settings, we evaluated the ARI between the parcellation

result of filtered data (Gaussian, global tNLM and GPDF) and

the ground truth as a function of the time-series length T as well

as SNR. For each simulated dataset, we ran 100 Monte Carlo

trials and boxplots were generated for each filtering method.

Figure 3 shows the result of ARI as a function of T in (a) and

SNR in (b).

The performance of Gaussian filtering does not improve

when T increases as the Gaussian filter applies a pure spatial

kernel to data without using the temporal information between

time series. In contrast, both the tNLM and GPDF filter show

improved performance as T increases, but GPDF outperforms

tNLM over the entire range of T .

When SNR varies with fixed T = 100, the ARI for the Gaus-

sian filtered case increases but the performance is limited by the

(a)

(b)

Figure 3: Robustness comparison of results using Gaussian filter, global tNLM

filter with optimized parameter and GPDF. (a) ARI between parcellation result

of filtered data and the ground truth as a function of time series length T with

fixed SNR = 0.3; ARI between parcellation result of filtered data and the ground

truth as a function of SNR with fixed T = 100.

inevitable blurring effects across boundaries of different func-

tional areas. Whereas, similar to (a), both tNLM and GPDF

yield better parcellation results as SNR increases and higher

ARI is obtained using GPDF-filtered data compared to tNLM.

3.2. Application to In-vivo Resting fMRI Dataset

3.2.1. Dataset and Filtering

40 subjects with minimally preprocessed rfMRI datasets (2

sessions, 2 phase encodings; 160 sessions total) were obtained

from HCP (Van Essen et al., 2013). The data were acquired with

TR = 720 ms with resolution 2 × 2 × 2 mm and had been pre-

processed using the pipeline described in Glasser et al. (2013),

where only minimal (2 mm FWHM) Gaussian smoothing was

applied. Then the data were co-registered onto a common atlas

and downsampled onto a 32K-vertex cortical surface. We fur-

ther downsampled each data to 11K vertices for computational

tractability.

We then filtered each dataset using Laplace-Beltrami (LB)

smoothing with a range of values of smoothing parameterσ (the

SD of the Gaussian kernel), tNLM with a range of values of the

parameter h defined in Equation (3) and GPDF with a range of

values of the parameter α defined in Equation (10). The effec-

tive δ in Equation (5) was chosen to be approximately 0.02 as

described in Section 2.2.1. We performed three experiments: (i)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Re-ordered unfiltered full correlation matrices based on the parcellation result using (a) the unfiltered data, (b) LB-filtered data, (c) tNLM-filtered data and

(d) GPDF-filtered data for K = 7. (e) - (h) shows the corresponding block-wise median SD map over 160 sessions for (a) - (d).

exploration of correlation, community structure and modular-

ity; (ii) seeded correlation; and (iii) comparison with task fMRI.

In each case we compared GPDF with LB and tNLM both qual-

itatively and quantitatively. In the first experiment, we demon-

strate the effect of filtering parameters (σ ∈ {1, 2, 3, 4, 5} mm,

h ∈ {0.2, 0.4, 0.6, 0.8, 1} and α ∈ {10−1, 10−2, 10−3, 10−4, 10−5}
in Section 3.2.2. For the other two experiments, we chose

h = 0.4 for the tNLM method and α = 10−4 for the GPDF

method, the optimal parameters from the first experiment. We

chose σ = 3 mm for the LB method to avoid poor performance

resulting from either under or over smoothing.

3.2.2. Unfiltered Correlation Matrix, Community

Structure and Modularity

Modularity is a measure of community structure that can

be used to identify sub-networks from brain connectivity data

(Sporns and Betzel, 2016). Community structure can be

directly visualized using the re-ordered connectivity matrix

(equivalently, the correlation or association matrix) based on

module detection or parcellation results. (See for example

Fig. 2 (i) in Sporns and Betzel (2016)).

We use the same concept here to demonstrate the effect of

filtering. For each dataset we took the unfiltered data and com-

puted the full Pearson correlation matrix, A ∈ RV×V , as the un-

derlying graph structure. We then applied the NCuts algorithm

(Shi and Malik, 2000) to parcellate the brain into K networks

using each of the following: the unfiltered data, the LB-filtered

data, the tNLM-filtered data and the GPDF-filtered data, gen-

erating parcellation labels for each of the four. We then used

those labels to re-order the original connectivity matrix A so

that vertices that have the same label are grouped together.

Figure 4 (a) - (d) show the re-ordered unfiltered connectiv-

ity matrix A based on the parcellation result (K = 7) using

the unfiltered data, the LB-filtered data, the tNLM-filtered data

and the GPDF-filtered data, respectively. Using the same (re-

ordered) unfiltered connectivity matrix A establishes an unbi-

ased comparison of the four partitions. The resulting re-ordered

connectivity matrix indicates how well each filtering method

grouped the data into functionally homogeneous regions with

respect to the original (unfiltered) data. In essence, we assume

that a better filtering method will give us a better clustering

of nodes under a given parcellation algorithm: nodes with the

same label (within the same network) tend to have higher as

well as consistent correlations with each other than with nodes

in other networks (diagonal blocks) and tend to have consistent

correlation (can be either positive, zero or negative) with nodes

in other networks (off-diagonal blocks). The GPDF result in

Fig. 4 (d) shows a neat grouping of nodes forming a clearer

blocky community structure and higher correlation in the diag-

onal blocks than all other cases shown in (a) - (c).

To quantitatively verify this observation, for each of the off-

diagonal blocks in each fMRI recording session, we computed

the SD of the correlation values within that block, yielding a

K ×K compressed SD map. Then we calculated the median SD

over the 160 fMRI sessions. Figure 4 (e) - (h) show the median

SD map for the unfiltered, the LB-filtered, the tNLM-filtered

and the GPDF-filtered case, respectively, for K = 7. The GPDF

result shows substantial lower SD in the off-diagonal blocks,

indicating higher consistency among the nodes in one network

with respect to the relationship to other networks. We observed

similar phenomena for other values of K.

To further evaluate filtering performance and its robustness

for a range of number of parcels K, for each unfiltered corre-

lation matrix A, we binarized it with a threshold T to form a

binary adjacency matrix A
′. We then calculated the modular-
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(a)

(b)

Figure 5: Network modularity plots. (a) The modularity as a function of the

threshold T for different K and filtering methods with fixed filtering parameter

σ = 3 mm, h = 0.4, and α = 10−4. The vertical bars represent the standard

errors. The data points have been jittered slightly along the x-axis for a better

visualization; (b) The modularity as a function of the threshold T for different

filtering method and parameters with fixed K = 17.

ity (Newman, 2006) for A
′ using each of the four K-network

partitions (unfiltered, LB, tNLM, GPDF) as a function of T .

The analyses were performed on each dataset independently.

Figure 5 (a) shows the median modularity with standard error

across 160 sessions as a function of T . The GPDF filtering

method outperformed LB, tNLM and the unfiltered case regard-

less of the threshold T and the number of parcels, indicating that

GPDF is producing parcellations with stronger within network

similarity with respect to the unfiltered data than either the un-

filtered case or tNLM or LB filtering.

Additionally, we investigated how the filtering parameters σ

for LB, h for tNLM and α for GPDF influenced the filtering re-

sult. We computed the modularity as described above while

varying σ ∈ {1, 2, 3, 4, 5} mm, h ∈ {0.2, 0.4, 0.6, 0.8, 1} and

α ∈ {10−1, 10−2, 10−3, 10−4, 10−5} with fixed number of parcels

K = 17. This number was selected for parcellation stability as

suggested in Yeo et al. (2011). Figure 5 (b) shows the modular-

ity as a function of T for each filtering parameter. Similar stan-

dard errors were observed as Fig. 5 (a) but were omitted here

for clarity of the plot. For LB filtering, smaller σ yields sim-

ilar results to the unfiltered case. Performance deteriorates as

σ increases due to the increasing amount of blurring and mix-

ing of signals across different functional regions. In general,

LB filtering actually performs worse than the unfiltered case,

regardless of the filtering parameter, when performing individ-

ual parcellations, suggesting that LB may not optimally pre-

serve differences between individuals based on a single fMRI

recording. For the tNLM method, slightly higher modularity

than the unfiltered case was achieved for an optimal value of

parameter h but performance then degrades significantly as h in-

creases. In contrast, GPDF outperforms the unfiltered case, LB

and tNLM, for most parameter settings except for large α with

high T . This is because larger α allows a significant fraction of

uncorrelated nodes to be involved in the filtered signal, result-

ing in worse performance as discussed in the introduction. We

found α = 10−4 gives the best result in this experiment, which

is the basis of our recommendation for a conservative α in the

GPDF filtering method as described in Section 2.2.2.

3.2.3. Seeded Correlation Maps

Seed-based methods have been widely used in fMRI data

analysis and brain network inference (Biswal et al., 1995; Di

Martino et al., 2008; Taylor et al., 2009; Uddin et al., 2009). To

evaluate the effects of filtering, we placed a seed point in the

caudal pre-cuneus which is part of the Default Mode Network

(DMN) (Fig. 6 (a)) and calculated the Pearson correlation of its

time series with those of all other vertices of the brain, to form

a correlation map.

Figure 6: Seeded correlation map for a single subject for (a) Unfiltered data;

(b) LB-filtered (σ = 3 mm) data; (c) tNLM-filtered (h = 0.4) data; (d) GPDF-

filtered (α = 10−4) data plotted in a common scale from −0.2 to 1 with the color

bar shown on the top right. (e) Unfiltered data re-plotted in its own narrow scale

with color bar shown on the bottom right. Seed point was selected in the caudal

pre-cuneus area shown as a black dot in (a). Positively correlated regions are

shown in red, uncorrelated regions in white and negatively correlated regions in

blue.

Figure 6 shows seed-point correlation maps for a single sub-

ject for the (a) unfiltered data; (b) LB-filtered data; (c) tNLM-
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(a)

(b) (c) (d)

Figure 7: Changes of the seeded correlation values after filtering. (a) Spatial map of the highly correlated vertices to the seed point in the unfiltered data; (b) Scatter

plot of the unfiltered correlation values of those vertices in (a) versus the LB-filtered correlation values overlaid with the null distribution P(r|ρ = 0) for T = 1200;

(c) Similar to (b) but for the tNLM-filtered case; (d) Similar to (b) but for the GPDF-filtered case.

filtered data and (d) GPDF-filtered data in a common scale

ranging from −0.2 to 1. DMN can be seen in the unfiltered cor-

relation map (a) but in the very low correlation range due to the

rfMRI’s inherent low SNR. Figure 6 (e) exaggerates the color

scale of unfiltered data for easy visualization of the correlation

structure. LB, tNLM and GPDF, in contrast, yield higher cor-

relations due to their ability to reduce noise and amplify signal.

However, GPDF exhibits a wider range of correlation values

than LB and tNLM.

Additionally, GPDF appears better able to preserves spatial

delineation of adjacent regions with opposite correlation polar-

ity relative to the seed point, for example two adjacent regions

are indicated by the arrows in Fig. 6. Boundaries are clearly vis-

ible in both the unfiltered data (exaggerated in (e)) and GPDF,

barely visible in tNLM but not in LB. These observations are

indicative of LB’s tendency to spatially blur the boundaries be-

tween distinct adjacent functional areas.

LB shows strong connections to the local points surround-

ing the seed point while connections to distal areas, especially

inter-hemispherical connections, are attenuated due to the lo-

calness of the filtering. This attenuation does not occur in

GPDF as strong correlations are preserved across distal and

inter-hemispheric regions of the DMN. GPDF therefore appears

to help reveal stronger intra-network connectivity than the LB

filtering method.

We also selected points that are highly correlated with the

seed point and explored how those correlations were altered by

filtering. A point was defined as being highly correlated with

the seed point if its value in Fig. 6 (a) lay in either of the two

tails of the null distribution H0 : P(r|ρ = 0, T = 1200) (over-

laid in Fig. 7 (b), (c) and (d) with 10−6 significance level (the

corresponding cut-off is 0.133)).

Figure 7 (a) shows the spatial locations in yellow of those

points highly correlated with the seed. Figure 7 (b), (c) and (d)

show the scatter plot between the unfiltered correlation (values

of those points in Fig. 6 (a)) and the filtered correlation (val-

ues of those points in Fig. 6 (b), (c) and (d)) for LB, tNLM

and GPDF, respectively. Both tNLM and GPDF amplify the

positive correlation values but retain the sign of the correlation,

Fig. 7 (c) and (d). This is expected since the non-local means

kernel was designed to average only similar signals. The am-

plification effect is larger in the GPDF case due to the design

of the shape of the kernel function. On the other hand, while

LB also amplifies the correlation values, after filtering the signs

of a substantial fraction of these correlation values have been

flipped from negative to positive, Fig. 7 (b). This is caused by

the blurring of signals across functional boundaries, indicating

a potential confound when interpreting results from LB-filtered

individual fMRI signals.

Similar results for other well known but less prominent net-

works, such as the motor network, the auditory network, the

executive control network, the salience network, the fronto-

parietal attentional control network and the language network,

are shown in the supplementary materials. Note that the seeded

correlation maps may not show the desired networks exclu-

sively due to overlap with other networks.

3.2.4. Parcellation Agreement with Task fMRI Activation

Maps

Parcellation of rfMRI data is used to elucidate underlying

spatial patterns in brain connectivity. However, the lack of an

available ground truth makes it difficult to interpret parcellation

results, especially when comparing different filtering methods.

We tried to address this difficulty by comparing rfMRI parcel-

lation results obtained from different filtering methods to the

localized task-based fMRI (tfMRI) results for each individual

rfMRI session.

Task fMRI datasets were also available and obtained from
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HCP for the same 40 subjects and they contained 7 major task

domains: motor strip mapping (Motor), language processing

(Language), emotion processing (Emotion), reward & decision-

making (Gambling), relational processing (Relational), social

cognition (Social) and working memory (WM). We used the

preprocessed (4 mm Gaussian smoothed) and analyzed tfMRI

z-score statistical maps from HCP, including a total of 15 task-

pair as described in detail in Barch et al. (2013): tongue vs aver-

age (t avg), left hand vs average (lh avg), right hand vs average

(rh avg), left foot vs average (lf avg) and right foot vs aver-

age (rf avg) from the Motor task; math vs story (math story)

from the Language task; faces vs shapes (faces shapes) from

the Emotion task; punish vs reward (punish reward) from the

Gambling task; object matching vs geometrical relationship

(match rel) from the Relational task; random movement vs in-

tentional movement (random tom) from the Social task; 0-back

vs 2-back (0bk 2bk), face vs average (face avg), place vs av-

erage (place avg), tool vs average (tool avg), body vs average

(body avg) from the WM task.

To evaluate the performance of different filtering methods,

for each individual fMRI session, we first parcellated the brain

(rfMRI data) into K parcels using a spatially constrained hierar-

chical parcellation approach (Blumensath et al., 2013) for each

of the filtering methods (unfiltered, LB, tNLM and GPDF). This

“region growing”-based parcellation method is particularly ap-

propriate for this tfMRI comparison purpose as it was designed

to robustly parcellate the entire human cerebral cortex on a

single subject basis. It also enforces spatial contiguity of the

parcels, which allows us to obtain a reasonable parcellation re-

sult from unfiltered data (see Blumensath et al. (2013) for de-

tails).

Qualitatively, Fig. 8 shows the maps of the parcel bound-

aries for K = 100 parcels overlaid on the z-score maps of

the Motor task t avg contrast in (a) - (d) and Emotional task

faces shapes contrast in (e) - (h) for a single session of subject

100307. Figure 8 illustrates improved consistency of the par-

cellation boundaries with different functional regions (e.g., the

tongue area and the fusiform face area) using GPDF filtering

relative to the unfiltered case. In contrast, in the LB-filtered

case, either some boundaries cross task-active areas or some

parcels contain both task-positive and task-negative regions.

To quantitatively measure performance for a certain task pair

we first converted the z score map into a p-value map and

thresholded the p-value map using Benjamini-Hochberg false

discovery rate (Benjamini and Hochberg, 1995) correction with

a q value of 0.05 to determine the activated vertices. Then in

each parcel we counted the number of activated vertices and

the counts from all parcels were sorted in a descending order

and normalized to have unit sum, forming a positively skewed

distribution. The larger the skewness, the higher concentra-

tion of the activated vertices into fewer parcels, hence the bet-

ter alignment of the functional boundaries to the task-positive

regions. We measured this skewness metric for all 15 task con-

trasts and all 160 individual fMRI sessions with different num-

ber of parcels K. Since there is no ground truth of the correct

K that should be used for the parcellation, we selected K = K′

as the value that yielded the largest skewness in the unfiltered

(a) (b)

(c) (d)

(e) (f) (g) (h)

Figure 8: Maps of parcel boundaries overlaid with motor task tongue vs average

contrast (a) - (d) and emotional task faces vs shapes (e) - (h) for a single session

of subject 100307 using the unfiltered data ((a) and (e)), the LB-filtered (σ = 3

mm) data ((b) and (f)), the tNLM-filtered (h = 0.4) data ((c) and (g)) and the

GPDF-filtered (α = 10−4) data ((d) and (h)). (Number of parcels K = 100)

case for each task and each session independently (K′ varies

substantially across different tasks and different sessions) and

compared the skewness using the same K′ in all four cases (un-

filtered, LB, tNLM and GPDF).

Figure 9 shows boxplots of skewness across 160 fMRI ses-

sions for each task pair. The skewness of GPDF are consistently

higher than the unfiltered, the LB-filtered as well as the tNLM-

filtered case for all 15 task pairs, despite the fact that they vary

from task to task.

We also applied a Wilcoxon signed-rank test to determine

if there was a significant improvement in skewness by filter-

ing. The statistical results confirmed our visual observation and

showed that GPDF filtering yields significantly higher skew-

ness when compared with the unfiltered, the LB-filtered, and

the tNLM-filtered case in all 15 task pairs. The median p-

value across all 15 task pairs is 8.90 × 10−15, 2.69 × 10−28 and

1.12 × 10−13 for the three comparison, respectively. The details

of the test statistics and the associated p-values are given in the

supplementary materials.

3.2.5. Computational Tractability

The time computational complexity is O(V2T ), where V is

the number of vertices/voxels and T is the number of time

points. At the first stage of the GPDF algorithm when the ker-
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Figure 9: Boxplots of the skewness over 160 fMRI sessions for all 15 task

pairs. Each column shows the boxplot for one particular task using the unfil-

tered data (far left), the LB-filtered data (middle left), the tNLM-filtered data

(middle right) and the GPDF-filtered data (far right).

nel function and parameter is estimated, the entire correlation

matrix is required to compute the histogram. The high compu-

tational burden can be significantly reduced by downsampling

the data to a lower spatial resolution. Based on our experiments,

the estimated kernel function and the parameter using the 11K

data is almost identical to that using full resolution data.

At the second stage when we filter the data, however, no

downsampling is needed and the computation can be per-

formed in a vertex-wise manner at the whole brain level. We

have implemented a block-wise filtering procedure where the

vertices were divided into blocks and the filtering was per-

formed iteratively over all blocks. The number of blocks

was dynamically determined based on the memory available

in the computer. This block-wise filtering achieves an ef-

fective trade-off between available memory and computation

time. This implementation has been released for research pur-

poses (see https://silencer1127.github.io/software/

GPDF/gpdf_main). Based on our experiments, filtering a full

resolution 96K HCP resting fMRI dataset (32K for left hemi-

sphere + 32K right hemisphere + 32K sub-cortical voxels) takes

approximately 7 minutes on a Dell desktop computer with an

Intel Xeon E5-1650 v2 @ 3.50 GHz CPU and 16 GB RAM.

Since the filtering can be performance in vertex-wise man-

ner, one may benefit from a customized GPU implementation

to further accelerate the filtering procedure.

4. Discussion

In this paper, we systematically developed a novel kernel

function based on the Bayes factor for global tNLM filtering.

We also provided a way to automatically tune the parameter

in order to achieve an optimal filtering result. We demon-

strated both qualitatively and quantitatively using simulations

as well as three experiments on in-vivo fMRI data that this

method can simultaneously perform denoising that better pre-

serves boundaries between regions of different functional spe-

cializations than standard linear filtering method.

The superior performance of GPDF filtering over the tradi-

tional linear filtering comes from the non-linearity of the ker-

nel function visible as the black curve in Fig. 1. This effect

can perhaps be most clearly seen in Fig. 8, where we evaluate

how well task-activated regions are confined to parcels identi-

fied from individual resting data, with and without filtering. We

note that linear (LB) filtering shows poorer performance than

with unfiltered data. We believe this is because linear filtering

inevitably produces blurring which can lead to misplacement of

functional boundaries, or even generation of spurious functional

regions along boundaries, as illustrated in Fig. 2. We show re-

sults in Fig. 8 for only one value of the LB smoothing parameter

(σ = 3 mm). Performance could be improved by reducing σ,

but with the limiting case of no filtering (σ = 0 mm) producing

the best performance. We also note that the surface-based LB

filtering used in our comparison is generally preferred over vol-

umetric Gaussian filtering (Jo et al., 2007; Coalson et al., 2018)

as volumetric filtering has partial volume effects in addition to

the problem of spatial mixing of signals across different func-

tional regions as discussed above. The performance of tNLM

is variable in Fig. 8, outperforming the case for unfiltered data

in some cases but not all. In contrast GPDF consistently shows

significantly better performance compared to all methods. Note

that the design of the kernel uses a data-driven approach, which

can be different for different datasets. Therefore, it may be par-

ticularly useful when inferring brain connectivity patterns from

individual fMRI recordings instead of a group analysis.

In some limiting cases, the kernel function may have a very

sharp transition from zero weight to unit weight, forming a

nearly binary kernel function, where vertices whose correlation

exceed the threshold will be averaged together. However, even

in this case it can be viewed as a valid filtering method rather

than a parcellation method since each vertex has a distinct cor-

relation pattern to all other vertices of the brain, thus the set of

vertices over which the time series are averaged together can

vary from vertex to vertex. Based on our experience, in most

cases the kernel function exhibits a smoother non-linear transi-

tion rather than a binary thresholding.

One limitation of our approach is that the parametric model

in Equation (6) for the distribution of the sample correlation

assumes samples are independent over time. In practice, rest-

ing fMRI exhibit strong correlations which can result in higher

variance than that predicted with this model (James et al., 2019;

Afyouni et al., 2019). This will result in higher weights being

applied to nodes with low correlation than would be the case if

time samples were independent. A more conservative (smaller)
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choice of the α parameter can be used to offset this effect using

the method as described here. An alternative approach that we

have not pursued, is to explore alternatives to Equation (6) that

account for correlation in the samples.

Another limitation is that the kernel function is estimated

based on the empirical correlation using the entire time-series,

which implicitly assume the stationarity of the fMRI signals.

Extensions of this method to performing temporally dynamic

filtering is a promising future direction.
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