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a b s t r a c t 

The default mode network (DMN) mediates self-awareness and introspection, core components of human con- 
sciousness. Therapies to restore consciousness in patients with severe brain injuries have historically targeted 
subcortical sites in the brainstem, thalamus, hypothalamus, basal forebrain, and basal ganglia, with the goal of 
reactivating cortical DMN nodes. However, the subcortical connectivity of the DMN has not been fully mapped, 
and optimal subcortical targets for therapeutic neuromodulation of consciousness have not been identified. In 
this work, we created a comprehensive map of DMN subcortical connectivity by combining high-resolution func- 
tional and structural datasets with advanced signal processing methods. We analyzed 7 Tesla resting-state func- 
tional MRI (rs-fMRI) data from 168 healthy volunteers acquired in the Human Connectome Project. The rs-fMRI 
blood-oxygen-level-dependent (BOLD) data were temporally synchronized across subjects using the BrainSync al- 
gorithm. Cortical and subcortical DMN nodes were jointly analyzed and identified at the group level by applying 
a novel Nadam-Accelerated SCAlable and Robust (NASCAR) tensor decomposition method to the synchronized 
dataset. The subcortical connectivity map was then overlaid on a 7 Tesla 100 μm ex vivo MRI dataset for neu- 
roanatomic analysis using automated segmentation of nuclei within the brainstem, thalamus, hypothalamus, basal 
forebrain, and basal ganglia. We further compared the NASCAR subcortical connectivity map with its counterpart 
generated from canonical seed-based correlation analyses. The NASCAR method revealed that BOLD signal in the 
central lateral nucleus of the thalamus and ventral tegmental area of the midbrain is strongly correlated with 
that of the DMN. In an exploratory analysis, additional subcortical sites in the median and dorsal raphe, lateral 
hypothalamus, and caudate nuclei were correlated with the cortical DMN. We also found that the putamen and 
globus pallidus are negatively correlated (i.e., anti-correlated) with the DMN, providing rs-fMRI evidence for 
the mesocircuit hypothesis of human consciousness, whereby a striatopallidal feedback system modulates ante- 
rior forebrain function via disinhibition of the central thalamus. Seed-based analyses yielded similar subcortical 
DMN connectivity, but the NASCAR result showed stronger contrast and better spatial alignment with dopamine 
immunostaining data. The DMN subcortical connectivity map identified here advances understanding of the sub- 
cortical regions that contribute to human consciousness and can be used to inform the selection of therapeutic 
targets in clinical trials for patients with disorders of consciousness. 

1. Introduction 

Recent advances in structural and functional connectivity mapping 
create opportunities for therapeutic neuromodulation of human brain 
networks ( Horn and Fox, 2020 ). For patients with disorders of con- 
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sciousness (DoC) caused by severe brain injuries, functional connectiv- 
ity mapping can be used to identify widely connected network hubs 
that are therapeutic targets for stimulation ( Edlow et al., 2020 ). The 
biological and mechanistic rationale for this targeted approach to neu- 
romodulation has been demonstrated in rodent ( Taylor et al., 2016 ) and 
non-human primate ( Redinbaugh et al., 2020 ) models, which show that 
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stimulation of subcortical network hubs promotes cortical reactivation 
and reemergence of consciousness from anesthetic coma. Emerging ev- 
idence from human electrical ( Corazzol et al., 2017 ; Schiff et al., 2007 ; 
Thibaut et al., 2014 ), pharmacologic ( Giacino et al., 2012 ; Whyte et al., 
2014 ), and ultrasound-based ( Cain et al., 2021a , 2021b ; Monti et al., 
2016 ) stimulation studies provide proof of principle that promoting re- 
covery of consciousness in patients with DoC is possible ( Edlow et al., 
2021a ). However, consensus on optimal subcortical therapeutic targets 
for neuromodulation of consciousness in humans has not been estab- 
lished ( Edlow et al., 2021b ). 

A promising approach to identifying subcortical therapeutic targets 
is a “top-down ” analysis of functional connectivity from canonical cor- 
tical networks that sustain consciousness. It is well established that 
the default mode network (DMN) contributes to self-awareness in the 
resting, conscious human brain ( Buckner and DiNicola, 2019 ; Qin and 
Northoff, 2011 ; Raichle and Snyder, 2007 ). Although DMN functional 
connectivity alone is not sufficient for consciousness ( Bodien et al., 
2019 ; Demertzi et al., 2015 ; Norton et al., 2012 ), dynamic interactions 
between DMN nodes in the posterior cingulate, precuneus, medial pre- 
frontal cortex, and inferior parietal lobules appear to be primary con- 
tributors to the neural correlates of consciousness ( Bodien et al., 2017 ; 
Edlow et al., 2021a ; Koch et al., 2016 ). 

Given that the cortical nodes of the DMN are well-characterized and 
could be directly targeted with noninvasive methods such as transcra- 
nial direct current stimulation (tDCS) and transcranial magnetic stim- 
ulation (TMS), one could ask why the subcortical nodes of the DMN 

are clinically relevant. We could extend the question and ask why in- 
vasive stimulation methods such as deep brain stimulation (DBS) are 
not applicable at the cortical level (e.g., by placing a DBS electrode 
into the precuneus). Crucially, invasive methods have targeted subcor- 
tical regions for good reason, which has been referred to as the “fun- 
nel effect ” of smaller brain nuclei ( Parent and Hazrati, 1995 ). Project- 
ing from cortical to subcortical structures ( Swanson, 2000 ), information 
dimensionality (which is decompressed and openly available on corti- 
cal levels) is reduced ( Bar-Gad et al., 2003 ). In ascending loops from 

subcortex to cortex, the reverse happens: information is expanded, de- 
compressed, or de-referenced ( Blouw et al., 2016 ). This architectural 
feature of the brain ( Bota et al., 2015 ), which involves high-low-high 
dimensionality transforms of information, renders effects of neuromod- 
ulation on cortical versus subcortical levels strikingly different. Based on 
the large receptive and projective fields of subcortical brain structures, 
targeted neuromodulation of a small nucleus will affect a widely dis- 
tributed and surprisingly large fraction of the entire cortex ( Horn et al., 
2019 , 2017 ; Schiff et al., 2007 ). In contrast, diffuse neuromodulation 
techniques (e.g., TMS, tDCS), which modulate broad patches of corti- 
cal tissue, could have similar effects on networks ( Fox et al., 2014 ). 
But doing the reverse (e.g., TMS to subcortical regions or DBS to cor- 
tical regions) would likely not produce the desired therapeutic effects. 
Hence, we believe it is crucial to precisely define subcortical nodes of 
the DMN to restore consciousness and cognitive function using targeted 
neuromodulation approaches such as DBS and low-intensity focused ul- 
trasound pulsation (LIFUP). 

Preliminary studies suggest that specific subcortical nuclei within 
the thalamus ( Alves et al., 2019 ; Cunningham et al., 2017 ; Lee and 
Xue, 2018 ), basal forebrain ( Alves et al., 2019 ), midbrain ( Bär et al., 
2016 ), pons ( Fransson, 2005 ), and striatum (caudate and putamen) 
( Choi et al., 2012 ; Di Martino et al., 2008 ) are structurally and func- 
tionally connected to cortical DMN nodes. Testing for functional connec- 
tivity between subcortical regions and the cortical DMN thus provides 
an opportunity to identify subcortical therapeutic targets in patients 
with DoC. Many such targets are amenable to therapeutic modulation 
by electrical ( Elias et al., 2020 ; Gratwicke et al., 2013 ; Kakusa et al., 
2020 ; Schiff et al., 2007 ) and ultrasound-based therapies ( Cain et al., 
2021a , 2021b ; Monti et al., 2016 ). However, DMN subcortical connec- 
tivity has not been fully mapped. In large part, this gap in knowledge is 
attributable to insufficient spatial resolution and low signal-to-noise ra- 

tio (SNR) of functional MRI, which poses a significant challenge to map- 
ping functional connectivity for individual subcortical nuclei ( Lee and 
Xue, 2018 ; Sclocco et al., 2018 ). 

In this study, we aimed to create a comprehensive map of the sub- 
cortical connectivity of the DMN by combining high-resolution func- 
tional and structural datasets with advanced signal processing methods. 
Specifically, we used the resting-state functional MRI (rs-fMRI) dataset 
from 168 subjects acquired at 7 Tesla (7T) within the Human Connec- 
tome Project (HCP) ( Smith et al., 2013 ). The rs-fMRI BOLD data were 
temporally synchronized across subjects using the BrainSync algorithm 

( Akrami et al., 2019 ; Joshi et al., 2018 ), which aligned all subjects’ 
data into the same spatiotemporal space, making it possible to model 
brain networks as low-rank components. The cortical and subcortical 
data were jointly analyzed and a more complete DMN (which spans 
both cortex and subcortex) was identified at the group level by apply- 
ing a novel Nadam-Accelerated SCAlable and Robust (NASCAR) tensor 
decomposition method ( Li et al., 2019b , 2021 ). The subcortical func- 
tional connectivity map was then overlaid on the 7T 100 μm ex vivo 
MRI dataset ( Edlow et al., 2019 ) for precise neuroanatomic analyses of 
the brainstem, thalamus, hypothalamus, basal forebrain and basal gan- 
glia using the FreeSurfer segmentation atlas ( Fischl, 2012 ), probabilistic 
thalamic segmentation atlas ( Iglesias et al., 2018 ), the Harvard ascend- 
ing arousal network atlas ( Edlow et al., 2012 ), and the basal forebrain 
and hypothalamus atlas proposed in Neudorfer et al. (2020 ). 

We first tested the hypothesis that the central lateral nucleus (CL) 
of the thalamus and the ventral tegmental area (VTA) of the midbrain 
are strongly connected to the cortical DMN. This hypothesis is based 
on evidence from anatomic connectivity studies ( Alves et al., 2019 ; 
Morales and Margolis, 2017 ; Schiff, 2010 , 2008 ; Yetnikoff et al., 2014 ), 
animal neuromodulation studies ( Baker et al., 2016 ; Redinbaugh et al., 
2020 ; Solt et al., 2014 ; Taylor et al., 2016 ), and limited human studies 
( Schiff et al., 2007 ), which collectively indicate that CL and VTA are 
widely connected subcortical network hubs whose stimulation may ac- 
tivate the cerebral cortex and promote reemergence of consciousness. 
Second, we performed exploratory analyses to identify additional sub- 
cortical regions whose BOLD signal shows strong positive or negative 
correlation (i.e., anti-correlation) with the cortical DMN, indicating that 
these regions could potentially be used as alternative targets of neuro- 
modulation. Finally, we explored the functional connectivity differences 
between the NASCAR approach and the traditional seed-based method 
and compared the results to immunostain data from a human brainstem 

specimen. We release the subcortical DMN functional connectivity map 
via the Lead-DBS, FreeSurfer and Open neuro platforms for use in future 
neuromodulation studies. 

2. Materials and methods 

2.1. 7T resting-state fMRI data 

We analyzed 7T resting-state fMRI (rs-fMRI) scans of healthy vol- 
unteers available from the Wash U/U Minn component of the Human 
Connectome Project (HCP) ( Van Essen et al., 2012 ). We chose the 7T, 
instead of the 3T, dataset as it provides better SNR, particularly in 
subcortical regions. Eight subjects were excluded due to acquisition 
and/or preprocessing issues according to the HCP data release update 
( HCP Wiki, 2020 ), resulting in a total of 168 subjects used in this study. 
These 168 subjects were randomly split into two equally sized groups for 
reproducibility analysis. The following experiments were carried out on 
each group independently (84 subjects in each group). The rs-fMRI data 
were collected in four independent sessions with opposite phase encod- 
ing directions (PA, AP) using a gradient-echo EPI sequence (1.6 mm 3 

isotropic voxels, TR = 1000 ms, TE = 22.2 ms), where each session was 
15 mins long ( 𝑇 = 900 frames). Only the first session (PA) was used in 
this work to minimize potential inter-subject misalignment due to the 
different EPI distortions in different phase encoding directions, although 
EPI distortion had been carefully corrected during the preprocessing 
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( Smith et al., 2013 ). The analyses were performed on the HCP minimally 
preprocessed 7T rs-fMRI data ( Glasser et al., 2013 ), which were resam- 
pled and co-registered to the MNI template. The data were then repre- 
sented in a grayordinate system ( Glasser et al., 2013 ), where there are 
approximately 32 K vertices on each hemisphere for cortical data and 
approximately 32 K voxels for subcortical data (2 mm 3 isotropic). No ad- 
ditional spatial smoothing beyond the standard minimal preprocessing 
pipeline (2 mm full width half maximum (FWHM) isotropic Gaussian 
smoothing) was applied, because linear smoothing often blurs bound- 
aries between different functional regions ( Bhushan et al., 2016 ; Li et al., 
2018 , 2020a ; Li and Leahy, 2017 ), which is problematic in resolving the 
relationships between small subcortical regions in the brainstem, thala- 
mus, hypothalamus, basal forebrain, and basal ganglia. 

2.2. Inter-subject temporal synchronization 

Resting-state fMRI data are not directly comparable between sub- 
jects, as spontaneous BOLD activities in different subjects are not tem- 
porally synchronized. This is a critical issue even in stimulus-locked task 
fMRI data, where identical task design is used, because response laten- 
cies may differ between subjects ( Friston et al., 1998 ). However, one 
of the assumptions in the low-rank tensor model we used in this work 
(described in the next section) is temporal synchrony across subjects, 
as the model does not work well on asynchronous fMRI data ( Li et al., 
2021 ). Therefore, we applied the BrainSync algorithm to achieve tem- 
poral alignment of the fMRI data ( Joshi et al., 2018 ). BrainSync seeks 
an optimal temporal orthogonal transformation between two subjects, 
such that after synchronization the time series in homologous regions 
of the brain are highly correlated. In order to avoid the potential bias 
introduced by selecting any specific reference subject, we used the ex- 
tended group BrainSync algorithm ( Akrami et al., 2019 ) to build one 
virtual reference subject. This virtual reference subject is close, in the 
mean square sense, to all real subjects in the high dimensional space. 
Then we aligned all real subjects’ data to that virtual reference to ob- 
tain a multi-subject synchronized dataset, Fig. 1 (a). Crucially, applying 
BrainSync will not alter functional connectivity metrics (as carried out 
by correlation coefficients across BOLD series) when calculated using 
the whole time period ( Joshi et al., 2018 ). 

2.3. Tensor-based brain network identification 

Let 𝑿 ∈ ℝ 𝑉 ×𝑇 be the synchronized rs-fMRI data of an individual sub- 
ject, where 𝑉 is the number of vertices or voxels (space) and 𝑇 = 900 is 
the number of time points (time). All subjects were concatenated along 
the third dimension (subject), forming a data tensor  ∈ ( ℝ ) 𝑉 𝑇 𝑆 , where 
𝑆 is the number of subjects, Fig. 1 (c). We model brain networks present 
in the group rs-fMRI data as a low-rank Canonical Polyadic (CP) model. 
Mathematically, the tensor  can be expressed as a sum of 𝑅 rank-1 
components: 

 ≈

𝑅 
∑

𝑟 =1 

𝜆𝑟 𝒂 𝑟 ◦𝒃 𝑟 ◦𝒄 𝑟 (1) 

where each rank-1 component 𝜆𝑖 𝒂 𝑖 ◦𝒃 𝑖 ◦𝒄 𝑖 can be viewed as a brain net- 
work; 𝒂 𝑖 ∈ ℝ 𝑉 , 𝒃 𝑖 ∈ ℝ 𝑇 , and 𝒄 𝑖 ∈ ℝ 𝑆 are the spatial map, the tempo- 
ral dynamics, and the subject participation level, respectively, in the 𝑖 th 

network; 𝜆𝑖 is the magnitude of that network, representing a relative 
strength of the activity in the 𝑖 th network to other networks; “◦” repre- 
sents the outer product between vectors. 𝑅 is the desired total number 
of networks. As the rank of fMRI data (number of networks) has been 
shown to be limited ( Biswal et al., 2010 ; Calhoun et al., 2001 ; Li et al., 
2021 ), we use 𝑅 = 30 , which is almost surely an over-estimated upper 
bound for the rank. Also, as we describe below, the DMN was discov- 
ered as the second prominent component, hence choosing a small R 
(e.g., 5) may be sufficient to reproduce the DMN findings in this study 
using other datasets, provided that the quality of the data and number 
of subjects are comparable. 

We solved this network identification (tensor decomposition) prob- 
lem ( Eq. (1) ) using the Nadam-Accelerated SCAlable and Robust 
(NASCAR) canonical polyadic decomposition algorithm ( Li et al., 2019b , 
2021 ). NASCAR employs an iterative method using low-rank solutions 
as part of the initializations when solving higher-rank problems. The ro- 
bustness of the solutions to initializations and the choice of 𝑅 and the 
scalability to large datasets is substantially improved by using this warm 

start approach, and its superior performance over other traditional net- 
work identification methods has been demonstrated in applications to 
both electroencephalography (EEG) data ( Li et al., 2019a , 2017 ) and 
fMRI data ( Li et al., 2021 , 2020b , 2019b ). 

2.4. Visualization of subcortical DMN connectivity 

The DMN was identified as the second strongest network (second 
largest 𝜆 value), with the “physiological ” signal being the strongest net- 
work (see the Discussion section). This is expected, as the DMN has been 
shown to be the most prominently active (or stable) brain network at 
rest ( Buckner and DiNicola, 2019 ; Raichle, 2015 ). In contrast to the tra- 
ditional definition of the DMN where only cortical nodes are considered, 
we redefine the DMN as a functional brain network that spans both cor- 
tex and subcortex. To explore DMN subcortical functional connectivity, 
the subcortical section of the spatial DMN map was separated from the 
cortical section using grayordinate indices, Fig. 1 (c) and (d). The cor- 
tical section of the DMN, which we refer to as the “cortical map ”, was 
plotted on the tessellated (inflated) surfaces for reference, as shown at 
the top of Fig. 1 (e). The subcortical counterpart was converted into a 3D 
volumetric representation in MNI space, referred to as the “subcortical 
map ”, and trilinearly interpolated into a 0.5 mm 3 isotropic resolution 
using the “mri_convert ” tool in FreeSurfer ( Fischl, 2012 ), as shown at the 
bottom of Fig. 1 (e). This interpolation procedure to higher resolution 
enabled both better visualization and the region-of-interest (ROI)-based 
analyses described below. Small ROIs in the atlases, such as CL, could 
vanish if the atlases are downsampled to the rs-fMRI resolution. 

For better visualization of subcortical functional connectivity, par- 
ticularly in relation to subcortical anatomy, the subcortical map was 
overlaid on a 7T 100 μm resolution ex vivo MRI dataset ( Edlow et al., 
2019 ) for precise neuroanatomic analyses. This dataset was acquired 
using a customized 31-channel coil over 100 h of scan time and was 
co-registered to the MNI space. A manual examination and minor regis- 
tration adjustment were performed to account for the subtle difference 
in the MNI template used for registering functional data in the HCP 
pipeline and that used in registering the 100 μm structural dataset. 

2.5. Region-of-interest-based analysis 

To study the functional connectivity for each subcortical ROI, we 
performed segmentation of the subcortical structures on the minimally 
preprocessed ( Glasser et al., 2013 ) T1-weighted image of a reference 
subject (HCP subject ID: 100610, the default 7T subject provided by the 
HCP) using the automated segmentation tool (aseg atlas) in FreeSurfer 
( Fischl, 2012 ). To avoid a potential signal spillover between putamen 
and globus pallidus (GP), we took the segmentation masks for both puta- 
men and GP from the aseg atlas, and then eroded the mask regions by an 
isotropic 1 mm sphere. This mask erosion process ensures that the puta- 
men and GP are at least 2 mm (the voxel size in the original fMRI reso- 
lution) apart from each other. Sub-division of the thalamus and segmen- 
tation of thalamic nuclei was performed using a probabilistic atlas (PTN 

atlas) ( Iglesias et al., 2018 ). The default segmentation output was used 
for all thalamic nuclei except for CL. Considering the small size and ir- 
regular shape of the CL nucleus, the CL segmentation mask was obtained 
by thresholding its posterior probability map at 0.03 (88th percentile). 
This threshold was estimated by visual inspection of the averaged CL 
map over 100 HCP subjects so that the thresholded map accurately rep- 
resents the shape and location of the CL nucleus. We used the Harvard 
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Fig. 1. Brain network identification pipeline. (a) Group BrainSync transform for temporal alignment; (b) 3D tensor formation (space x time x subject); (c) Tensor 
decomposition using the Nadam-Accelerated SCAlable and Robust (NASCAR) canonical polyadic decomposition. 𝒂 𝑖 , 𝒃 𝑖 , and 𝒄 𝑖 are the spatial map, the temporal 
dynamics, and the subject participation level for 𝑖 th component, respectively; (d) Grayordinate representation of the spatial map of the default mode network (DMN); 
(e) The cortical map and the subcortical map of the DMN. 

ascending arousal network (AAN) atlas ( Edlow et al., 2012 ) for sub- 
division of brainstem nuclei, and an atlas proposed in ( Neudorfer et al., 
2020 ) for sub-division of basal forebrain and hypothalamus (BF/HT) nu- 
clei. Labels of the AAN atlas were manually traced and provided in the 
MNI space ( Edlow et al., 2012 ). Finally, all atlases were upsampled into 
a 0.5 mm 3 isotropic resolution if the original atlases were in a lower 
resolution. Details about the ROIs with respect to the atlases are shown 
in Table 1 . 

2.6. Quantitative analysis and hypothesis testing 

Because the rs-fMRI time series were normalized to have zero mean 
and unit norm during preprocessing to satisfy the requirement for inter- 
subject synchronization ( Joshi et al., 2018 ), the absolute values in 
the identified DMN are less interpretable than the relative differences 

among ROIs. Therefore, to facilitate a meaningful quantitative interpre- 
tation, we performed a normalization at each voxel of in the subcortical 
map by the 95% quantile (a scalar) of the values in the cortical DMN 

map, top of Fig. 1 (e). Thus, the normalized subcortical map indicates 
how strong the subcortical DMN activity is relative to the cortical DMN 

activity. Here we use the word “activity ” to indicate the signals/values 
in either the cortical DMN map or subcortical DMN map ( Fig. 1 (e)) 
identified using the NASCAR method. For each ROI, we plotted the nor- 
malized values of the subcortical map within that ROI, using a violin 
plot. 

To address whether CL is strongly connected to the cortical DMN, 
we statistically tested if the mean of the subcortical DMN map within 
CL is significantly higher than that within the entire thalamus (including 
CL), using a two-sample t -test. Considering the volumetric interpolation 
procedure used above and the spatial smoothness of the rs-fMRI data, 
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Table 1 
Subcortical regions of interest with respect to the FreeSurfer aseg altas (FreeSurfer), the probabilistic thalamic nuclei atlas 
(PTN), the Harvard ascending arousal network atlas (AAN), the basal forebrain / hypothalamus atlas (BF/HT), and their 
acronyms. 

FreeSurfer PTN Acronym FreeSurfer BF/HT Acronym 
Thalamus Anteroventral AV Diagonal band of Broca dB 

Central Medial CeM Nucleus Basalis of Meynert NBM 

Central Lateral CL Medial Preoptic MPO 
Centromedian CM Paraventricular Pa 
Lateral Dorsal LD Dorsal Periventricular Hypothalamic DPEH 
Lateral Geniculate Nucleus LGN Lateral Hypothalamus LH 
Lateral Posterior LP Ventromedial Hypothalamic VM 

Limitans (Suprageniculate) LSg Arcuate Hypothalamic AN 
Medial Dorsal lateral MDl Periventricular Hypothalamic Pe 
Medial Dorsal medial MDm Dorsomedial Hypothalamic DM 

Medial Geniculate Nucleus MGN Supraoptic Hypothalamic SO 
Reuniens (Medial Ventral) MVRe Suprachiasmatic Hypothalamic SC 
Paracentral Pc Tuberomammillary Hypothalamic TM 

Parafascicular Pf Posterior Hypotahalamic PH 
Pulvinar Anterior PuA Anterior Hypothalamic Area AHA 
Pulvinar Inferior PuI FreeSurfer AAN Acronym 
Pulvinar Lateral PuL Brainstem Dorsal Raphe DR 
Pulvinar Medial PuM Median Raphe MnR 
Ventral Anterior VA Periaqueductal gray PAG 
Ventral Anterior Magnocellular VAmc Ventral Tegmental Area VTA 
Ventral Lateral anterior VLa Locus Coeruleus LC 
Ventral Lateral posterior VLp Laterodorsal Tegmental LDTg 
Ventromedial VM Midbrain Reticular Formation mRt 
Ventral Posterolateral VPL Parabrachial Complex PBC 

Pontis Oralis PnO 
FreeSurfer Acronym Pedunculotegmental PTg 
Caudate Cd 
Putamen Put 
Globus Pallidus GP 

correction of 𝑝 -values for multiple comparison are necessary. Correc- 
tions were performed based on random field theory ( Brett et al., 2003 ; 
Worsley et al., 1992 ), where the number of resolution elements ( “re- 
sel ”) was calculated based on the volume of each ROI and the FWHM of 
volumetric smoothing described in Glasser et al. (2013) . We similarly 
tested for VTA using this procedure, but with a comparison to the entire 
brainstem region (including VTA). 

We then performed an exploratory analysis to test whether there are 
other candidate ROI(s) within the thalamus, hypothalamus, brainstem, 
basal forebrain, and basal ganglia that have a strong connection to the 
cortical DMN, and thus could be used as subcortical targets for neuro- 
modulation. We repeated the statistical testing above for all other ROIs 
defined in the PTN, AAN, and BF/HT atlas, with the proper correction 
for multiple comparisons as described above. 

2.7. Comparison to seed-based method 

We placed a single-vertex seed in the posterior cingulate cortex 
(PCC), which is one of the most commonly used seed locations in the 
DMN ( Fox et al., 2005 ). For each voxel in the subcortical region, we 
then computed the Pearson correlation between that subcortical voxel 
and the seed, generating a seed-based subcortical functional connectiv- 
ity map. Similar to the NASCAR analysis in Section 2.4 , we visualized the 
result by overlaying it on the 100 μm structural dataset. We performed 
this seed-based analysis with and without global signal regression pre- 
processing. We repeated the above procedure using a second widely 
used single-vertex seed in the ventromedial prefrontal cortex (vmPFC). 

2.8. Comparison of rs-fMRI results with brainstem immunostaining data 

To validate the results, we compared the subcortical maps from the 
NASCAR and seed-based correlation analyses with tyrosine hydroxy- 
lase immunostain data from a human brainstem specimen. The brain- 
stem specimen was donated from a 53-year-old woman, with written 

informed consent from a surrogate decision-maker as part of an Insti- 
tutional Review Board-approved protocol. Additional details regarding 
the patient’s medical history, as well as the brainstem fixation and sec- 
tioning procedures, have been previously described, as this brainstem 

provided the basis for the Harvard AAN atlas used here ( Edlow et al., 
2012 ). For this analysis, we performed new tyrosine hydroxylase stains 
(rabbit polyclonal anti-tyrosine hydroxylase antibody; Pel-Freez Biolog- 
icals; Rogers AR) on tissue sections from the caudal and rostral mid- 
brain. Tyrosine hydroxylase stains dopamine-producing neurons, and 
thus was used as a reference standard for the accuracy of the VTA func- 
tional connectivity maps produced by the NASCAR and seed-based cor- 
relation analyses. The full tyrosine hydroxylase immunostaining proto- 
col is available at https://github.com/ComaRecoveryLab/Subcortical _ 
DMN _ Functional _ Connectivity and the stained tissue sections are avail- 
able for interactive viewing at https://histopath.nmr.mgh.harvard.edu . 

2.9. Reproducibility analysis 

We randomly split the 7T HCP rs-fMRI data into two halves and per- 
formed the same network identification procedure on these two inde- 
pendent datasets. The DMN was identified from each group and visually 
compared. Quantitatively, we also computed the Pearson correlation be- 
tween the spatial map of the two identified DMNs. 

3. Results 

3.1. Qualitative visualization result 

Fig. 2 (a) and (b) shows the DMN subcortical map identified by the 
NASCAR method in an axial slice through the thalamus and striatum. 
The DMN subcortical map at the level of the basal forebrain, hypothala- 
mus, and rostral midbrain is shown in Fig. 2 (c) and (d). Fig. 3 shows the 
DMN subcortical map at the level of the caudal midbrain in (a), (b), and 
the rostral pons in (c), (d). We use “correlation ” hereafter to indicate the 
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Fig. 2. Map of subcortical DMN connectivity in the thalamus, basal ganglia, and rostral midbrain. (a) Overview of thalamus and basal ganglia; (b) Zoom-in version 
of (a) with annotations; (c) Overview of rostral midbrain; (d) Zoom-in version of (c) with annotations. The warm color (yellow/orange) indicates positive association 
or correlation with the DMN, and the cold color (blue) indicates negative association or anti-correlation with the DMN. Cl – Claustrum; CP – cerebral peduncle; GPe 
– Globus Pallidus Externus; GPi – Globus Pallidus Internus; Ins – Insula; Pg – parahippocampal gyrus; Ret – Reticular nuclei; Refer to Table 1 for other acronyms. 

functional connectivity relationship of the subcortical regions to the cor- 
tical DMN. However, this “correlation ” is not the Pearson correlation co- 
efficient (see Section 3.3 ). Rather, it represents the strength of the DMN 

activity at each subcortical region. The higher the magnitude of the 
value in a subcortical region (the actual value could be either positive or 
negative), the stronger “resonance ” of this region to the cortical DMN. 
The entire 3D volumetric results are shown as a video in the supplemen- 
tary material and available at https://github.com/ComaRecoveryLab/ 
Subcortical _ DMN _ Functional _ Connectivity . The visualization results are 
not sufficient for making inferences at individual voxels due to the low 

spatial resolution of the fMRI data, as well as imperfect inter-subject 
coregistration (more detail in the Discussion section). Supplementary 
Fig. S1 includes the DMN functional connectivity map in its native res- 
olution overlaid on the same 100 μm structural MRI for reference. 

Overall, we observed that the DMN subcortical components were 
largely symmetric about the midline of the brain, and the patterns ap- 
peared as spatially contiguous blobs. Importantly, there was no spatial 
constraint in the low-rank model itself, as shown in Fig. 1 (d), where 
each voxel/vertex was treated independently as part of the grayordi- 
nate representation during the decomposition. In other words, a random 

shuffle of the vertices/voxels before decomposition and a corresponding 
shuffle in the reverse order after the decomposition would not change 

the results, indicating that these resulting patterns likely reflect a phys- 
iological property of the data, not an artifact of the processing pipeline. 

With respect to the neuroanatomic localization, the strongest re- 
gions of subcortical DMN functional connectivity were observed within 
the central thalamus, lateral hypothalamus, caudate nucleus, ventral 
tegmentum of the midbrain, periaqueductal grey area of the midbrain, 
and midline raphe of the midbrain and pons. All of these regions 
have animal or human evidence supporting their roles in the modu- 
lation of arousal, and hence consciousness ( Alam et al., 2002 ; Eban- 
Rothschild et al., 2016 ; Lu et al., 2006 ; Parvizi, 2001 ; Van der Werf et al., 
2002 ; Villablanca et al., 1976 ). The subcortical regions that showed the 
strongest anti-correlations with the DMN were the putamen and globus 
pallidus interna, regions that constitute the inhibitory component of 
a mesocircuit that was postulated to modulate the cerebral cortex via 
GABAerigc innervation of the central thalamus ( Schiff, 2010 ). The basal 
forebrain did not contain large clusters of correlated or anti-correlated 
voxels. 

3.2. Quantitative analysis result 

Fig. 4 displays results of the analysis of subcortical functional con- 
nectivity with the DMN, using subcortical structures defined in the 
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Fig. 3. Map of subcortical DMN connectivity in the caudal midbrain and rostral pons. (a) Overview of caudal midbrain; (b) Zoom-in version of (a) with annotations; 
(c) Overview of rostral pons; (d) Zoomed version of (c) with annotations. See Fig. 2 for color scheme. Cb – cerebellum; Den – dentate nucleus of the cerebellum; SCP 
– superior cerebellar peduncle. Refer to Table 1 for other acronyms. 

FreeSurfer aseg atlas. Subcortical regions are displayed along the x-axis, 
and the y-axis represents the normalized values with respect to the corti- 
cal DMN. We found that all subcortical structures exhibited substantially 
lower DMN activity compared to the cortex, with an averaged absolute 
percentage of 3.9%. We observed that the highest subcortical DMN sig- 
nal is in the thalamus, caudate, and brainstem, reaching approximately 
30% of the cortical DMN signal strength. The thalamus, caudate, brain- 
stem, and hypothalamus showed strong positive correlations with the 
DMN, and the basal forebrain showed moderate positive correlations 
with the DMN, although negative correlations were also observed in 
these regions. Interestingly, the majority of voxels within the globus 
pallidus and putamen exhibited negative correlations with the DMN. 

Fig. 5 shows the violin plots of the DMN signals for the thalamic 
nuclei. CL showed significantly higher functional connectivity with the 
cortical DMN than the average of thalamic signals. CL had the 4th high- 
est median value (slightly higher median values were observed in AV, 
MDm, and PuM), and the highest maximum value among all thalamic 
nuclei. CL contained voxels with the strongest correlation to the DMN, 
reflected by the heavy tail on top of its distribution. 

Fig. 6 shows similar violin plots for the brainstem region. We found 
that the VTA had significantly higher DMN functional connectivity than 
the average of the brainstem, consistent with previous studies ( Bär et al., 
2016 ). Although VTA did not show the highest median value, it did 
contain the highest maximum value among all brainstem nuclei. 

In the exploratory analysis, we identified multiple additional nuclei 
that showed strong connection to the cortical DMN: AV, LP, MDl, MDm, 
PuM, and VA in the thalamus ( Fig. 5 ), DR, MnR, mRt, PnO, and PTg in 
the brainstem ( Fig. 6 ), and LH, VM, TM, and AHA in the hypothalamus 
( Fig. 7 ). Interestingly, distinct connectivity patterns were observed in dB 
and NBM, the two basal forebrain ROIs. Whereas dB showed exclusively 
positive DMN correlations, NBM showed a distribution of positive and 
negative correlations, yielding a median DMN connecting value close to 
zero. NBM was the only basal forebrain or hypothalamic nucleus with 
a substantial proportion of voxels showing negative correlations (i.e., 
anti-correlations) with the DMN. 

3.3. Seed-based method and immunostaining images 

Fig. 8 shows the seed-based correlation result for PCC in (a), (c) 
and for vmPFC in (b), (d) without global signal regression. The cor- 
responding counterparts with global signal regression are shown in (e) 
– (h). Overall, these seed-based correlation results exhibit similar sub- 
cortical connectivity patterns (relative contrast between regions) to the 
patterns identified by NASCAR shown in Figs. 2 and 3 . Specifically, in 
both the seed-based and NASCAR analyses, CL and VTA visually had 
the strongest correlation to the cortical DMN in comparison with other 
nuclei. However, the absolute correlation profile, especially the sign of 
the correlation (positively correlated vs anti-correlated), substantially 
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Fig. 4. Violin plots for large-scale ROIs defined in FreeSurfer aseg atlas. Each 
violin plot shows the distribution of the DMN signals overlaid with dots for each 
individual voxel. The white dot indicates the median and the black bar through 
the white dot is the traditional boxplot, where the thicker bar represents the 
25% to 75% quantile and the thinner bar represents the whisker length that is 
1.5 times of the interquartile, covering approximately 99.3% of the data range. 
The color scheme of the violin plots follows that in the atlas. 

differed between the results with global signal regression and in the 
ones without global signal regression. In the top row of Fig. 8 , where 
no global signal regression was applied, positive correlations were ob- 
served for most regions. This inflation of the correlation may be due 
to the global “physiological ” or “vascular ” component present in the 
fMRI data ( Murphy and Fox, 2017 ; Zhu et al., 2015 ). In contrast, this 
“physiological ” component was captured by NASCAR as a component 
separate from the DMN; thus, negative connections are clearly visible in 
the NASCAR result shown in Figs. 2 and 3 . Although global signal regres- 
sion can be used in seed-based analyses to reduce contamination from 

the “physiological ” component, as shown in the bottom row of Fig. 8 , 
it can be difficult to interpret the meaning of these negative correla- 
tions, as it has been shown mathematically that global signal regression 

Fig. 6. Violin plots for brainstem ROIs defined in the AAN atlas. See Fig. 5 for 
interpretation of the statistical significance. 

Fig. 7. Violin plots for hypothalamus and basal forebrain ROIs defined in the 
atlas of Neudorfer et al., 2020 . See Fig. 5 for interpretation of the statistical 
significance. 

Fig. 5. Violin plots for thalamic ROIs defined in the PTN atlas. The acronyms of the nuclei are labeled along the x-axis (see Table 1 for details). An asterisk is placed 
above the violin plot if the average DMN signal within that nucleus is significantly higher than the mean signal of the entire thalamic region according to two sample 
Students’ t -test. The star is colored in blue if the 𝑝 -value is below the standard 𝛼 cutoff value of 0.05 after the correction and colored in red if the 𝑝 -value is below an 
𝛼 cutoff value of 0.001 (this cutoff was chosen heuristically for contrasting and highlighting a higher significance). 
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Fig. 8. Seed-based correlation analysis results. (a) PCC-seeded correlation map in the same axial plane as Fig. 2 (b), showing correlation structures in thalamus and 
basal ganglia without global signal regression; (b) Same as (a) but using the seed point in vmPFC; (c) Same as (a) but in the caudal midbrain plane, Fig. 3 (b); (d) 
Same as (c) but using the seed point in vmPFC; (e)–(h) Same as (a)–(d) but with global signal regression. 

Fig. 9. Immunostain images of dopaminergic ventral tegmental area (VTA) neu- 
rons in (a) the caudal midbrain and (b) the rostral midbrain. Dopaminergic neu- 
rons (brown) were immunostained with tyrosine hydroxylase, and each axial 
section was counterstained with hematoxylin (blue). In both the caudal and ros- 
tral midbrain sections, the VTA neurons extend laterally and posteriorly along 
the lateral border of the decussation of the superior cerebellar peduncles (a) and 
the red nuclei (b). The human brainstem specimen used for these immunostains 
was donated by a 53-year-old woman who died of non-neurological causes. A 
surrogate-decision maker provided written informed consent for brain donation 
and postmortem research. Additional details about the specimen have been pre- 
viously published ( Edlow et al., 2012 ). 

introduces negative correlation into the seed-based correlation results 
( Murphy et al., 2009 ; Murphy and Fox, 2017 ). Indeed, the co-existence 
of both positive and negative correlation after the global signal regres- 
sion in the dopaminergic VTA region, as shown in Fig. 8 (g) and (h), 
does not appear to be anatomically consistent with prior anatomic at- 
lases ( Edlow et al., 2012 ; Trutti et al., 2021 ), with our immunostain 
data ( Fig. 9 ), or with prior neuronal labeling studies in rodents, non- 
human primates, and humans ( Breton et al., 2019 ; Root et al., 2016 ; 
Taylor et al., 2014 ), as discussed below. Finally, there were substantial 
variations in the seed-based correlation result depending on the choice 
of the seed point, which is consistent with findings in the literature 
( Uddin et al., 2009 ). For example, negative correlations were observed 

in the putamen and globus pallidus when PCC was selected as the seed 
shown in Fig. 8 (a), whereas they were barely visible when vmPFC was 
used as the seed shown in Fig. 8 (b). 

3.4. Reproducibility analysis 

The spatial maps of the identified DMN from the two independent 
groups were visually indistinguishable, and the correlation coefficient 
between the two spatial maps (grayordinate representation) was 0.987, 
demonstrating the high reproducibility of the results using our tensor- 
based analysis pipeline. 

4. Discussion 

In this brain mapping study using 7T rs-fMRI data from the HCP, 
we characterized the subcortical connectivity of the human DMN 

and openly release the results in standardized form (via Lead-DBS, 
Open neuro , and FreeSurfer). We expanded the DMN to include sub- 
cortical nodes by a joint analysis on the grayordinate system, providing 
a more complete map of the human DMN. The map was generated by 
a tensor-based NASCAR decomposition method that revealed extensive 
interconnections between the canonical cortical DMN and subcortical 
regions within the brainstem, thalamus, hypothalamus, basal forebrain, 
and basal ganglia. Further, the NASCAR and seed-based correlation re- 
sults supported our hypothesis that CL and VTA are subcortical nodes 
strongly connected to the cortical DMN. The spatial, temporal, and phys- 
iological properties (e.g., correlations versus anti-correlations) of the 
subcortical DMN connectivity map create new opportunities to elucidate 
subcortical contributions to human consciousness and provide therapeu- 
tic targets for interventions that aim to promote recovery of conscious- 
ness in patients with severe brain injuries. 

Our functional connectivity results are consistent with, and build 
upon, decades of electrophysiological and neuroimaging investigations 
of the subcortical networks that modulate consciousness. For example, 
the CL nucleus of the thalamus is a well-established hub node of re- 
ciprocal thalamocortical networks, as CL is richly innervated by arousal 

9 



J. Li, W.H. Curley, B. Guerin et al. NeuroImage 245 (2021) 118758 

neurons of the brainstem and basal forebrain ( Steriade and Glenn, 1982 ) 
and provides diffuse innervation of the neocortex ( Dempsey and Mori- 
son, 1941 ). More recently, deep brain stimulation studies targeting CL in 
non-human primates ( Baker et al., 2016 ; Redinbaugh et al., 2020 ) and 
humans with severe brain injuries ( Schiff et al., 2007 ) have confirmed 
the role of CL in modulating consciousness. However, a non-invasive, 
fMRI-based biomarker of CL functional connectivity has been elusive, 
and the mechanisms and pathways by which the central thalamus mod- 
ulates the DMN remain an area of active study ( Cunningham et al., 2017 ; 
Guldenmund et al., 2013 ; Wang et al., 2014 ). Here, we provide robust 
evidence, with out-of-sample testing, for strong positive correlations be- 
tween the CL nucleus and the human DMN. Indeed, individual voxels 
within CL showed the strongest correlation with the DMN of any thala- 
mic voxels, and the median correlation strength of CL voxels with the 
DMN was the fourth highest of all thalamic nuclei. These observations 
suggest that high spatial and temporal resolution rs-fMRI with advanced 
signal processing and modeling methods, as performed here, provide a 
potential biomarker of CL-DMN functional connectivity and an oppor- 
tunity to test the hypothesis that CL stimulation induces reemergence 
of consciousness via CL-DMN functional connectivity in patients with 
severe brain injuries. 

The potential translational impact of the CL-DMN functional con- 
nectivity findings is particularly noteworthy when considered in the 
context of the mesocircuit hypothesis of consciousness, for which we 
provide new rs-fMRI functional connectivity evidence in the human 
brain. Specifically, we observed anti-correlations between the putamen, 
globus pallidus, and the DMN, indicating that putaminal and pallidal 
activity toggles inversely with the thalamic CL and the cortical DMN. 
These observations are consistent with known GABAergic inhibitory 
neuronal inputs from GPi to CL, a neuroanatomic relationship that 
has been suggested by clinical case studies but has not been directly 
observed with fMRI in the human brain. Since the proposal of the meso- 
circuit hypothesis in 2010 ( Schiff, 2010 ), multiple clinical observations 
have supported the hypothesis ( Fridman et al., 2014 ; Williams et al., 
2013 ), including the paradoxical therapeutic response of approximately 
5% of patients with severe brain injuries to the GABAergic medication 
zolpidem ( Whyte et al., 2014 ) – a response believed to be mediated by 
restoration of CL disinhibition within the mesocircuit. Our subcortical 
functional DMN connectivity results raise the possibility that individ- 
ualized rs-fMRI maps of GPi-CL-DMN functional connectivity can be 
used in future clinical trials as a predictive biomarker (i.e., to identify 
patients who are likely responders to GABAergic therapy) and as a 
pharmacodynamic biomarker (i.e., to test whether a therapy engages 
the mesocircuit target). 

Importantly, BOLD fMRI anti-correlations recorded at mesoscale 
should not be interpreted as a direct measure of neuronal signals 
recorded at microscale ( Fox et al., 2009 ). Anti-correlations reflect nu- 
merous neuro-vascular-glial properties ( Fox et al., 2009 ; He et al., 2018 ), 
and thus our anti-correlation results do not provide direct proof of the 
mesocircuit hypothesis. Nevertheless, our rs-fMRI methods provide a 
mesoscale biomarker of mesocircuit integrity that may have utility in 
clinical trials, particularly when considering that non-invasive stimu- 
lation techniques such as LIFUP are now targeting the globus pallidus 
( Cain et al., 2021b ) and central thalamus ( Cain et al., 2021a ; Monti et al., 
2016 ) in patients with DoC. 

Additional neuroanatomic insights provided by the subcortical DMN 

connectivity map include new evidence for brainstem nodes that are 
strongly connected to the DMN. The VTA functional connectivity find- 
ings confirmed our hypothesis that the VTA is strongly connected 
to the DMN, consistent with recent rs-fMRI evidence for VTA func- 
tional connectivity with the posterior cingulate/precuneus, a central 
hub node of the DMN ( Buckner and DiNicola, 2019 ; Thomas Yeo 
et al., 2011 ). VTA modulation of consciousness via dopaminergic sig- 
naling has been suggested by preclinical studies using pharmacologic 
( Kenny et al., 2015 ; Solt et al., 2011 ), electrical ( Solt et al., 2014 ), opto- 
genetic ( Eban-Rothschild et al., 2016 ; Taylor et al., 2016 ), and chemo- 
genetic ( Oishi et al., 2017 ) stimulation, as well as a mouse dopamine 

knock-out model ( Palmiter, 2011 ). However, until recently, there has 
only been indirect evidence for dopaminergic VTA modulation of hu- 
man consciousness from pharmacological studies using dopaminergic 
drugs ( Fridman et al., 2019 , 2010 ; Giacino et al., 2012 ), as well as 
positron emission tomography studies of dopamine receptor dynamics 
( Fridman et al., 2019 ). Now, with emerging evidence for dopaminergic 
VTA modulation of human consciousness via DMN functional connectiv- 
ity ( Spindler et al., 2021 ), there is a compelling clinical need for robust 
and reliable biomarkers of VTA-DMN functional connectivity. A major 
goal for future research will be to determine if such a biomarker can be 
validated on 3T scans that are used for clinical purposes. Also, to facil- 
itate future comparison to patients with DoC, we measured the volume 
of the VTA in each healthy subject included in our study, as well as VTA 
displacement in all three principal directions (R-L, A-P, S-I) during the 
warping of the subject to MNI space. Histograms of the measures are 
shown in Fig. S2. 

Beyond CL and VTA, our exploratory analyses suggest that the DMN 

has subcortical connections in additional regions of the brainstem, hy- 
pothalamus, thalamus, basal ganglia, and basal forebrain. These findings 
should be considered hypothesis-generating and will require validation 
in future connectivity studies. To inform the design of future experi- 
ments, we emphasize that several subcortical nuclei that demonstrated 
DMN correlations have strong data to support their role in modulating 
arousal, and hence consciousness, in prior animal studies. In particu- 
lar, DR and MnR have been shown in animal electrophysiological ex- 
periments to regulate arousal ( McGinty and Harper, 1976 ; Trulson and 
Jacobs, 1979 ; Xi et al., 2004 ), and these serotonergic nuclei in the pon- 
tomesencephalic raphe have been shown to be functionally connected 
to the DMN ( Bär et al., 2016 ) or to constitute a sub-network of the 
DMN ( Beliveau et al., 2015 ) in prior human rs-fMRI experiments. The 
mRt and PnO nuclei, classically considered the brainstem’s “reticular 
core ”, are also recognized as key nodes of an ascending reticular acti- 
vating system, based on decades of electrophysiologic investigations of 
arousal in animal models ( Moruzzi and Magoun, 1949 ; Steriade et al., 
1982 ; Xi et al., 2004 ). Similarly, our observation of lateral hypotha- 
lamic area and tuberomammillary nucleus connectivity with the DMN 

is consistent with electrophysiologic studies in rodent models of sleep- 
wake cycle regulation ( Alam et al., 2002 ; Takahashi et al., 2006 ). Col- 
lectively, these exploratory results thus add to a strong body of evi- 
dence in animal models, and a small but growing body of evidence in 
human studies, that multiple subcortical regions are involved in arousal 
regulation. Our findings expand upon prior studies by suggesting that 
DMN functional connectivity is a mechanism by which these subcorti- 
cal nuclei activate the cerebral cortex to promote consciousness. Elu- 
cidation of the precise physiological mechanisms, temporal dynamics, 
and anatomic subspecialization of these subcortico-cortical connections 
will require multi-modality investigations of arousal in animal models 
( Pais-Roldán et al., 2019 ) and human experiments ( Fultz et al., 2019 ) 
designed to interrogate the structure and function of subcortical arousal 
pathways at increasingly higher levels of spatial and temporal resolution 
( DeFelipe, 2010 ). 

When averaged over data from many subjects, the NASCAR and seed- 
based correlation methods yielded similar spatial patterns and contrast 
of the subcortical DMN. There has been debate about whether global 
signal regression helps or hurts the correlation analysis ( Murphy and 
Fox, 2017 ). Without global signal regression, the correlation measures 
tend to be inflated due to the involvement of global “physiological ”
signals ( Chen et al., 2020 ). On the other hand, the application of 
global signal regression introduces negative correlations ( Murphy et al., 
2009 ; Murphy and Fox, 2017 ). In contrast, NASCAR directly models the 
“global physiological ” network as one of the low-rank components. In 
fact, this component was identified as the first network during the ten- 
sor decomposition, with the network strength 𝜆 even higher than that of 
the DMN. In this way, NASCAR successfully decoupled the DMN from 

this global component, avoiding the ambiguity in the interpretation of 
the seed-based correlation results. 
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A manifestation of this ambiguity generated by seed-based correla- 
tion with global signal regression is seen in the VTA functional con- 
nectivity results. Whereas the NASCAR method detected DMN correla- 
tions within the VTA, the seed-based correlation with global signal re- 
gression detected correlations and anti-correlations. Prior studies have 
shown that the VTA contains not only dopaminergic neurons, but also 
GABAergic and glutamatergic neurons, raising the possibility that VTA 
interactions with the DMN could be spatially heterogeneous. However, 
prior neuronal labeling studies in rodents, non-human primates, and hu- 
mans ( Breton et al., 2019 ; Root et al., 2016 ; Taylor et al., 2014 ) indicate 
that dopaminergic, GABAergic, and glutamatergic neurons are intermin- 
gled within the VTA, making it unlikely that there would be discrete 
subregions of BOLD correlations and anti-correlations within the VTA. 
Furthermore, our immunostaining results ( Fig. 9 ) revealed a symmet- 
ric, spatially contiguous distribution of dopaminergic neurons within 
the VTA. Given that the majority of VTA neurons produce dopamine 
( Taylor et al., 2014 ), these immunostaining results suggest that the spa- 
tially contiguous correlation results generated by the NASCAR method 
are more anatomically plausible than the spatially disparate correlation 
and anti-correlation results generated by the seed-based correlation with 
global signal regression. 

A limitation of the NASCAR approach is the assumption of per- 
fect inter-subject coregistration. The low-rank tensor model would 
fail if there were substantial spatial misalignment among subjects. 
In this study, we relied on the boundary-based registration method 
( Greve and Fischl, 2009 ) used in the HCP minimal preprocessing 
pipeline ( Glasser et al., 2013 ). Although many model-based and more 
recent deep-learning-based approaches ( Balakrishnan et al., 2019 ; 
Cheng et al., 2020 ; Robinson et al., 2014 ; Yeo et al., 2010 ) have been 
proposed to improve inter-subject coregistration, registration of subcor- 
tical regions remains challenging, especially when working with fMRI 
data where the spatial resolution is insufficient. For these reasons, al- 
though our results shown in Figs. 2 and 3 exhibited neuroanatomically 
plausible patterns of the subcortical DMN, we caution against making 
inferences on the voxel level, particularly near the boundaries of sub- 
cortical structures. The functional connectivity map in supplementary 
Fig. S1 shows the functional connectivity results before interpolation 
and illustrates this limitation. 

As with other data-driven approaches (e.g., independent component 
analysis), post-hoc manual inspection of the decomposed components is 
required. Theoretically, one NASCAR component may contain multiple 
networks, or multiple NASCAR components may represent sub-networks 
of a large-scale canonical network. However, in this work, the DMN was 
identified as the second component and confirmed by visualization of 
the cortical map spatially shown in Fig. 1 (e). We did not find other com- 
ponents exhibiting a spatial map similar to the DMN. Due to this data- 
driven property of the NASCAR decomposition method, exploration of 
other components besides the DMN is a promising future direction. 

The SNR of fMRI data is very low, as all 30 networks extracted using 
the NASCAR method accumulatively could only explain ∼11% of the 
variance in the data. Moreover, the SNR in subcortical regions is much 
lower than that in the cerebral cortex, making it difficult to identify 
functional connectivity in subcortical regions, particularly in the brain- 
stem ( Sclocco et al., 2018 ). As seen in Fig. 4 , the average magnitude of 
DMN signals identified in the subcortical regions is only ∼5% of that in 
the cortical nodes. We attempted to address this inherent limitation of 
subcortical fMRI data by analyzing the 7T HCP rs-fMRI dataset, which 
has possibly the best SNR of any publicly available dataset. Hence, it 
is difficult to judge whether the results discovered in this work will be 
reproducible when the method is applied to datasets with lower SNR. 
However, reproducing and generalizing these findings to 3T scanners 
and lower resolution rs-fMRI datasets is essential for clinical transla- 
tion. We are currently applying these methods to HCP 3T data and plan 
to translate them to rs-fMRI data acquired in patients with DoC (also 
at 3T but lower resolution than the HCP dataset). It is possible that the 
subcortical map identified at 7T may appear different at 3T because of a 

lower SNR at lower field strength. It remains to be determined if this low 

SNR issue can be overcome by including more subjects in the analysis. 
There are very few available atlases that allow for segmenta- 

tion of subcortical arousal nuclei in the brainstem, thalamus, hy- 
pothalamus, and basal forebrain ( Adil et al., 2021 ; Aggarwal et al., 
2013 ; Bianciardi et al., 2018 ; Edlow et al., 2012 ; Ford et al., 2013 ; 
Iglesias et al., 2018 ; Neudorfer et al., 2020 ; Prats-Galino et al., 2012 ; 
Soria et al., 2011 ; Tang et al., 2018 ; Trutti et al., 2021 ). Among those 
atlases, to our knowledge only the Harvard AAN atlas ( Edlow et al., 
2012 ) contains all of the brainstem arousal nuclei that we aimed to study 
here, and only the FreeSurfer PTN atlas ( Iglesias et al., 2018 ) contains 
the central lateral nucleus of the thalamus. The latter is a key node in 
the arousal network, and one that has been targeted in therapeutic trials 
of deep brain stimulation ( Schiff et al., 2007 ) and low-intensity focused 
ultrasound pulsation ( Monti et al., 2016 ). We therefore selected the Har- 
vard AAN atlas for brainstem ROIs and the PTN atlas for thalamic ROIs 
because they provided segmentations of the arousal nuclei that are most 
relevant to patients with DoC. It is important to acknowledge that both 
of these atlases have limitations. Namely, the Harvard AAN atlas is not 
probabilistic, and while it is based upon histological data, the ROIs were 
traced manually in MNI space. Furthermore, both the Harvard AAN atlas 
(1 mm 3 ) and FreeSurfer PTN atlas (0.5 mm 3 ) were created at lower spa- 
tial resolution than the 100 μm MRI template used in this study, raising 
the possibility that future studies using higher-resolution atlases may 
provide better delineation of subcortical regions that are functionally 
connected to the DMN. 

5. Conclusion 

We provide a functional connectivity map of the subcortical DMN 

in the human brain. We reveal new functional connectivity properties 
of the brainstem, hypothalamus, thalamus, basal forebrain, and basal 
ganglia, which may be used in future investigations of subcortical con- 
tributions to human consciousness. The subcortical DMN connectivity 
map may also be used in clinical trials as a predictive biomarker to in- 
form patient selection or as a pharmacodynamic biomarker to measure 
whether a therapy engages its target within the DMN. We release the 
subcortical DMN connectivity map via the Lead-DBS, FreeSurfer and 
Open neuro platforms for use in future neuromodulation studies. 

Data and code availability 

The data used in this study are publicly available from the Wash U/U 

Minn component of the Human Connectome Project, Young Adult Study 
at https://www.humanconnectome.org/study/hcp-young-adult . 

For research purposes, we release the subcortical functional 
map of the default mode network at Lead-DBS ( https://www.lead- 
dbs.org/helpsupport/knowledge-base/atlasesresources/atlases ), 
FreeSurfer ( https://surfer.nmr.mgh.harvard.edu/ ), and Open neuro 
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code is released at the GitHub repository ( https://github.com/ 
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