
NeuroImage 227 (2021) 117615 

Contents lists available at ScienceDirect 

NeuroImage 

journal homepage: www.elsevier.com/locate/neuroimage 

Robust brain network identification from multi-subject asynchronous 
fMRI data 

Jian Li a , ∗ , Jessica L. Wisnowski b , c , Anand A. Joshi a , Richard M. Leahy a 

a Signal and Image Processing Institute, University of Southern California, Los Angeles, CA 90089, United States 
b Radiology and Pediatrics, Division of Neonatology, Children’s Hospital Los Angeles, Los Angeles, CA 90027, United States 
c Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, United States 

a r t i c l e i n f o 

Keywords: 
Brain network identification 
Functional MRI 
Tensor decomposition 
Optimization 

a b s t r a c t 

We describe a novel method for robust identification of common brain networks and their corresponding temporal 
dynamics across subjects from asynchronous functional MRI (fMRI) using tensor decomposition. We first tem- 
porally align asynchronous fMRI data using the orthogonal BrainSync transform, allowing us to study common 
brain networks across sessions and subjects. We then map the synchronized fMRI data into a 3D tensor (ver- 
tices × time × subject/session). Finally, we apply Nesterov-accelerated adaptive moment estimation (Nadam) 
within a scalable and robust sequential Canonical Polyadic (CP) decomposition framework to identify a low 

rank tensor approximation to the data. As a result of CP tensor decomposition, we successfully identified twelve 
known brain networks with their corresponding temporal dynamics from 40 subjects using the Human Connec- 
tome Project’s language task fMRI data without any prior information regarding the specific task designs. Seven 
of these networks show distinct subjects’ responses to the language task with differing temporal dynamics; two 
show sub-components of the default mode network that exhibit deactivation during the tasks; the remaining 
three components reflect non-task-related activities. We compare results to those found using group independent 
component analysis (ICA) and canonical ICA. Bootstrap analysis demonstrates increased robustness of networks 
found using the CP tensor approach relative to ICA-based methods. 

1. Introduction 

Characterization and identification of brain networks from func- 
tional MRI provides important insights into brain organization and the 
influence of development, aging and disease on large-scale communi- 
cation in the brain. The most widely used tools for identification of 
these networks across subjects are based on independent component 
analysis (ICA). One approach to group analysis is to perform ICA indi- 
vidually on each subject and then combine components across groups 
( Calhoun et al., 2001a ; Esposito et al., 2005 ). Alternatively, group ICA 
can be performed directly across subjects through either temporal or 
spatial concatenation ( Calhoun et al., 2001b ; Guo and Pagnoni, 2008 ; 
Schmithorst and Holland, 2004 ; Svensén et al., 2002 ). Temporal con- 
catenation produces components with unique time series for each sub- 
ject but shared spatial maps. Spatial concatenation produces common 
time-series but unique spatial maps for each subject. 

Although meaningful components can be found using these ICA- 
based approaches ( Calhoun et al., 2009 ), by concatenating multi- 
subject data into a 2-dimensional representation, we lose the higher- 
dimensional (space × time × subject) low-rank structure that may be 
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inherent in the data. This low-rank structure can be captured and effi- 
ciently represented in a tensor format as we illustrate below in Fig. 1 . 
Another limitation of group ICA is that it requires an additional assump- 
tion of either spatial or temporal independence, which may not be re- 
alistic as brain networks can overlap and be correlated in both space 
and time ( Karahano ğlu and Van De Ville, 2015 ). Further, it has been 
shown that stability or robustness of the solutions is a well-known issue 
associated with ICA ( Himberg and Hyvärinen, 2003 ), although several 
variants have been developed to improve its stability ( Du and Fan, 2013 ; 
Varoquaux et al., 2010 ). Significantly different independent components 
may be obtained from bootstrap resamples of the data, or even as a re- 
sult of different initializations with the same data. 

In order to address these issues, we use a tensor decomposition of the 
multi-subject fMRI data. Higher-order tensor decomposition is a gener- 
alization of matrix factorization. Application of tensor decomposition 
to fMRI data for brain network identification has previously been ex- 
plored. The Tucker and canonical polyadic (CP) models ( Cichocki et al., 
2015 ; Kolda and Bader, 2009 ) are the two most commonly used tensor 
representations. Leonardi and Van De Ville applied a Tucker model to 
sliding-window-based dynamic connectivity tensors derived from task 
fMRI data and predicted the task design paradigm for unseen sub- 
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Fig. 1. Brain network identification pipeline: (a) multi-subject fMRI data: the spatial maps show single-time brain activity at all vertices on a surface representation 
and the time courses show single-vertex brain activity through the entire fMRI recording; (b) The counterpart to (a) but after synchronization using BrainSync; (c) 
Tensor formation by arranging the subjects along the third dimension; (d) Tensor decomposition into 𝑅 rank-1 components. (e) Each rank-1 component represents 
a brain network (or response to tasks) with a spatial map ( 𝑎 𝑖 ), a temporal dynamic ( 𝑏 𝑖 ), and a subject participation level ( 𝑐 𝑖 ). 

jects ( Leonardi and Van De Ville, 2013 ). Al-sharoa et al. performed 
a 4D Tucker decomposition by adding one extra dimension over the 
Leonardi model via random sampling over time and subjects, allow- 
ing them to identify five different brain states using 𝑘 -means clustering 
( Al-sharoa et al., 2019 ). In comparison with the CP model, Tucker allows 
interactions between different modes through its core tensor which can 
have an impact on interpretability. Furthermore, the orthogonality con- 
straints imposed on the Tucker solutions may not be realistic for brain 
networks. For these reasons, here we focus on the CP decomposition. 

CP decomposition is most frequently performed using an alternat- 
ing least square algorithm for a group-level fMRI study to find common 
networks among subjects. For example, Andersen and Rayens applied a 
third-order CP decomposition to finger-tapping task fMRI ( Andersen and 
Rayens, 2004 ). Beckmann and Smith extended ICA to higher-order ten- 
sors by imposing an independence constraint in the spatial dimension 
( Beckmann and Smith, 2005 ). Instead of adding an independence con- 
straint, Sen and Parhi imposed an orthogonality constraint in the spatial 
dimension as with PCA ( Sen and Parhi, 2017 ). However, CP decomposi- 
tion on fMRI data is not as popular as other methods because of several 
issues limiting its applicability to fMRI studies as discussed below. 

Multi-subject group analysis on asynchronous fMRI data : Almost all 
fMRI studies using CP decomposition were performed on task fMRI 
data, with the assumption that the temporal dynamics were synchro- 
nized across subjects based on alignment of the response stimulus timing 
( Andersen and Rayens, 2004 ). This temporal synchrony across multiple 
subjects is a strict requirement for CP decomposition to work well with 
low-rank models. However, the assumption may not be satisfied even 
when an identical task design is used across all subjects because individ- 
ual responses to tasks may differ in latency, sometimes significantly for 
higher-level cognitive tasks ( Friston et al., 1998 ). Low-rank CP decom- 

position cannot be performed when using different task designs across 
scans or when no task is present as in the case of resting-state fMRI. 
Moreover, any brain processes independent of the task cannot be iden- 
tified using a CP decomposition because this task-independent activity 
is not synchronized even when the data are aligned to stimulus presen- 
tation. 

Here we combine the tensor decomposition with a temporal align- 
ment step based on an orthogonal transform, BrainSync ( Joshi et al., 
2018 ; Akrami et al., 2019 ). This transform exploits similarity in tem- 
poral correlation structure across subjects to produce alignment at ho- 
mologous locations across subjects in the sense that the resulting time 
series are highly correlated. By applying this transformation prior to 
computing the tensor decomposition we are able to produce approxi- 
mate synchronization of the time series for each component or network 
across subjects, as we show below. 

Robustness against local minima and scalability to large dataset : The 
most common method for CP decomposition uses alternating least 
squares (ALS) for optimization. It has been shown that ALS is not 
guaranteed to converge to a global minimum or a stationary point for 
a CP model, even with multi-start ( Cichocki et al., 2015 ; Kolda and 
Bader, 2009 ). Although adding additional constraints, such as inde- 
pendence ( Beckmann and Smith, 2005 ) or orthogonality ( Sen and 
Parhi, 2017 ), may help avoid local minima, those constraints may not 
be physiologically reasonable for brain network identification. Indeed, 
specific concerns ( Helwig and Hong, 2013 ; Stegeman, 2007 ) have been 
raised against imposing those constraints when applying the CP model 
to fMRI data. Moreover, the naïve ALS algorithm does not scale well 
to large datasets. As we have shown in ( Li et al., 2018 , 2017 ), compu- 
tational complexity is approximately quadratically proportional to the 
largest dimension of the tensor. In fact, most of the studies cited above 
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heavily downsampled the data in the spatial domain in order to have a 
tractable CP decomposition. For robustness, a multi-start strategy needs 
to be employed, resulting in an even higher complexity. 

In this paper we describe a method that uses tensor decomposition 
to robustly identify common brain networks, (that is, it computes both 
spatial maps and temporal dynamics simultaneously) across multiple 
subjects from potentially asynchronous fMRI data without imposing un- 
realistic constraints on the networks. We approach this problem using 
the Nesterov-accelerated adaptive moment estimation (Nadam) method 
( Dozat, 2016 ) applied to a full-gradient search to simultaneously esti- 
mate all components of the tensor. As with our earlier work, we use a 
sequential canonical polyadic decomposition framework ( Li et al., 2018 , 
2017 ), in which we compute a sequence of solutions, increasing the rank 
by one at each step and using the lower rank solution as a warm-start to 
initialize the search. As noted above, we first apply the BrainSync algo- 
rithm ( Joshi et al., 2018 ), which uses a temporally orthogonal transform 

to align time-series across subjects. 
We refer to our tensor decomposition algorithm as Nadam- 

Accelerated SCAlable and Robust (NASCAR) CP decomposition. Using 
this pipeline, as illustrated in Fig. 1 , we show that spatially overlapped 
and temporally correlated brain networks can be successfully identified 
from multi-subject task fMRI data using NASCAR. We also explore ro- 
bustness of the resulting networks relative to group ICA ( Calhoun et al., 
2001b ) and canonical ICA (CanICA) ( Varoquaux et al., 2010 ) using 
multi-start and bootstrapping. 

An outline and some preliminary work of the idea described here 
have been previously presented in ( Li et al., 2019 ). The current paper 
provides a more detailed description of the method and novel experi- 
mental results using language task fMRI data. 

2. Methods 

2.1. Time-series synchronization 

Functional MRI time series from two different subjects are often not 
directly comparable. This is clearly the case for resting-state fMRI stud- 
ies where spontaneous activity varies over subjects and time. Even in 
stimulus-locked event-related studies, brain activity can vary due to dif- 
fering latencies in response ( Friston et al., 1998 ). However, in order to 
usefully represent multi-subject fMRI data as a third-order tensor, they 
must be temporally aligned. We address this problem before comput- 
ing the tensor decomposition using the recently developed BrainSync 
method for temporal synchronization ( Joshi et al., 2018 ). This method 
exploits similarity in correlation structure across subjects to perform an 
orthogonal rotation of time series data between two or more subjects to 
induce a high correlation between time series at homologous locations. 

Let 𝑿 𝑖 and 𝑿 𝑗 be matrices representing fMRI data for any two sub- 
jects, each of size 𝑉 × 𝑇 , where 𝑉 is the number of vertices and 𝑇 is 
the number of time points with 𝑉 ≫ 𝑇 . We assume in the following that 
these data have been mapped onto a tessellated representation of the 
mid-cortical surface, non-rigidly aligned and resampled onto a common 
mesh ( Glasser et al., 2013 ). BrainSync finds an orthogonal transform O S 

that minimizes the total squared error: 

𝑶 𝑆 = argmin 
𝑶 ∈𝑶 ( 𝑇 ) 

‖𝑿 𝑖 − 𝑿 𝑗 𝑶 ‖2 
𝐹 

where 𝑶 ( 𝑇 ) represents the group of 𝑇 × 𝑇 orthogonal matrices. The 
problem is well-posed when 𝑉 ≫ 𝑇 and has the closed form solution 
( Joshi et al., 2018 ): 

𝑶 𝑆 = 𝑼 𝑽 ⊤

where 𝑼 𝚺𝑽 ⊤ = 𝑿 𝑖 𝑿 𝑗 
⊤
is the singular value decomposition of the cross- 

correlation matrix between 𝑿 𝑖 and 𝑿 𝑗 and “⊤” is the transpose operator. 
After applying this transform, the time series at homologous locations 
in the two subjects will be aligned in the sense that they will be highly 
correlated as illustrated in Fig. 1 (a) and (b). An extension of BrainSync 
from pair-wise to group alignment is described in ( Akrami et al., 2019 ). 

2.2. Tensor representation and decomposition of fMRI data 

The Canonical Polyadic (CP) decomposition approximates a third- 
order tensor  ∈ ℝ 𝐼×𝐽×𝐾 ( ℝ space × time × subject ) as a sum of rank-1 ten- 
sors: 

 ≈

𝑅 ∑

𝑟 =1 

𝜆𝑟 𝒂 𝑟 ◦𝒃 𝑟 ◦𝒄 𝑟 (1) 

where 𝒂 𝑟 ∈ ℝ 𝐼 , 𝒃 𝑟 ∈ ℝ 𝐽 , 𝒄 𝑟 ∈ ℝ 𝐾 have unit norm; 𝜆𝑟 represents the scale 
factor for each component; “◦” is the vector outer product and 𝑅 is 
the rank or number of components. For fMRI data, the tensor  is 
formed by arranging spatiotemporal data for a group of subjects as il- 
lustrated in Fig. 1 (c). Each component obtained from the decomposi- 
tion, 𝜆𝑟 𝒂 𝑟 ◦𝒃 𝑟 ◦𝒄 𝑟 , can be viewed as representing a distinct brain network, 
where 𝒂 𝑟 , 𝒃 𝑟 , 𝒄 𝑟 are the spatial map, temporal dynamics, and relative am- 
plitude of each subject’s involvement in that network, respectively, as 
illustrated in Fig. 1 (d) and (e). 

If we combine the 𝒂 𝑟 to form a matrix 𝑨 = [ 𝒂 1 𝒂 2 ⋯ 𝒂 𝑅 ] ∈ ℝ 𝐼×𝑅 

and similarly for 𝑩 ∈ ℝ 𝐽×𝑅 and 𝑪 ∈ ℝ 𝐾×𝑅 , then we can express a least- 
squares fit of the tensor model to the data in terms of the following three 
equivalent cost functions ( Kolda and Bader, 2009 ): 

𝑓 = min 
𝑨 , 𝑩 , 𝑪 

1 
2 
‖𝑿 ( 1 ) − 𝑨 ( 𝑪 ⊙ 𝑩 ) ⊤‖2 

𝐹 

= min 
𝑨 , 𝑩 , 𝑪 

1 
2 
‖𝑿 ( 2 ) − 𝑩 ( 𝑪 ⊙ 𝑨 ) ⊤‖2 

𝐹 

= min 
𝑨 , 𝑩 , 𝑪 

1 
2 
‖𝑿 ( 3 ) − 𝑪 ( 𝑩 ⊙ 𝑨 ) ⊤‖2 

𝐹 

(2) 

where 𝑿 ( 𝑖 ) is the matricized or unfolded version of tensor  along the 
𝑖 th dimension ( Kolda and Bader, 2009 ); “⊙” is the Khatri-Rao product 
between two matrices. 

A common approach to fitting the tensor is to use Alternating Least 
Squares (ALS): first solving for 𝑨 with 𝑩 and 𝑪 fixed, then solving for 
𝑩 with 𝑨 and 𝑪 fixed, and so on until convergence. We previously used 
an ALS approach for tensor decompositions of EEG data in combination 
with a warm start procedure. The warm start approach, Scalable and 
Robust Sequential CP Decomposition (SRSCPD), builds a model of suc- 
cessively higher order, 𝑟 , with each search initialized using the results 
from the previous order, 𝑟 − 1 ( Li et al., 2018 , 2017 ). Here we use a full 
gradient-based method, again in combination with a warm start, which 
we found to converge substantially faster than ALS. 

2.3. Gradient of the CP Model, Adam and Nadam 

If we treat the variables in a CP model as a high-dimensional vector 
lying in the space of 𝒙 ∈ ℝ 𝑁 , where 𝑁 = 𝐼 × 𝑅 + 𝐽 × 𝑅 + 𝐾 × 𝑅 , then 
objective function 𝑓 ( 𝑨 , 𝑩 , 𝑪 ) in Eq. (2) is a scalar-valued cost function 
𝑓 ( 𝒙 ) ∶ ℝ 𝑁 

→ ℝ . Solutions can be obtained using gradient-based opti- 
mization. The partial gradient of the objective function 𝑓 with respect 
to the loading matrix 𝑨 is: 

∇ 𝑨 𝑓 = − 𝑿 ( 1 ) ( 𝑪 ⊙ 𝑩 ) + 𝑨 
(
𝑪 

⊤𝑪 ∗ 𝑩 
⊤𝑩 

)

and like-wise for 𝑩 and 𝑪 , where “∗ ” is the Hadamard product between 
two matrices ( Acar et al., 2011 ). A gradient-based search on the un- 
regularized cost function will not produce a unique solution because all 
solutions in the form of { 𝜂1 𝑨 , 𝜂2 𝑩 , 𝜂3 𝑪 } with 𝜂1 𝜂2 𝜂3 = 1 are equivalent. 
To resolve this ambiguity, we use the Tikhonov regularizer: 

𝑓 = min 
𝑨 

1 

2 
‖𝑿 ( 1 ) − 𝑨 ( 𝑪 ⊙ 𝑩 ) ⊤‖2 

𝐹 + 
𝜇𝐴 

2 
‖𝑨 ‖2 

𝐹 (3) 

where 𝜇𝐴 is the regularization parameter and similarly for 𝑩 and 𝑪 . 
The role of the regularization term is to prevent individual terms in the 
outer product becoming arbitrarily large. For this reason, the minimizer 
of Eq. (3) is relatively insensitive to the choice of regularization param- 
eter 𝜇𝐴 provided the value is not too large (see Section 3.2 ). In this 
regularized case, the gradient becomes ( Acar et al., 2011 ): 

∇ 𝑨 𝑓 = − 𝑿 ( 1 ) ( 𝑪 ⊙ 𝑩 ) + 𝑨 
(
𝑪 ⊤𝑪 ∗ 𝑩 ⊤𝑩 

)
+ 𝜇𝐴 𝑨 (4) 
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and similarly for 𝑩 and 𝑪 . Moreover, in real application to in-vivo fMRI 
data below, we imposed an additional non-negativity constraint on the 
subject mode ( 𝑪 ≽ 𝟎 ) since we assume each subject could either partic- 
ipate or not in a network but could not negatively participate. 

Adaptive moment estimation (Adam) ( Kingma and Ba, 2014 ) is 
a popular first-order solver used in the deep learning community 
( Ruder, 2016 ). Its superior performance is achieved using momentum- 
based acceleration together with an adaptive learning rate, which al- 
lows small step sizes for parameters with large accumulative gradients 
and large step sizes for parameters with small accumulative gradients. 
Recently, Dozat described a modified algorithm, Nadam, in which Nes- 
terov acceleration is incorporated into Adam ( Dozat, 2016 ). In the fol- 
lowing, we use Nadam to update all modes simultaneously using the 
gradients above. The default values for the parameters are chosen to 
be 𝛼 = 0 . 001 , 𝛽1 = 0 . 9 , 𝛽2 = 0 . 999 and 𝜖 = 10 −8 per ( Kingma and Ba, 
2014 ). 

We use a warm initialization from lower rank solutions to improve 
convergence rates. We demonstrate below that this full gradient-based 
approach is also more robust than ALS. The Nadam-Accelerated SCAl- 
able and Robust (NASCAR) CP decomposition algorithm is outlined in 
Algorithm 1 . Starting with a rank-1 solution using ALS, we then use 
Nadam to solve the main decomposition problem at each rank from 2 
to 𝑅 with warm initializations { 𝑨 ∗ , 𝑩 ∗ , 𝑪 ∗ } , where 𝑓 in line 7 is the 
Tikhonov regularized objective function shown in Eq. (3) with gradient 
shown in Eq. (4) , and similar forms for 𝑩 and 𝑪 , except that the non- 
negativity constraint on 𝑪 is tackled by a projected version of Nadam 

to the non-negative orthant. Note that the model in Eq. (1) constrains 
the components of { 𝑨 ∗ , 𝑩 ∗ , 𝑪 ∗ } to have unit norm. Rather than inte- 
grate this constraint into the Nadam search, we simply normalize and 
then re-scale the components after and before the Nadam procedure as 
shown in lines 8 and 6 respectively. 

Algorithm 1: NASCAR. 

s Algorithm NASCAR (  , 𝑅 ) 

1 𝒂 1 , 𝒃 1 , 𝒄 1 , 𝝀1 
← CP-ALS (  , 1) 

2  𝑟𝑒𝑠 ←  − Tensor_Recon ( 𝒂 1 , 𝒃 1 , 𝒄 1 , 𝝀1 ) 

3 𝒂 ′ , 𝒃 ′ , 𝒄 ′ , 𝝀′
← CP-ALS (  𝑟𝑒𝑠 , 1) 

4 𝑨 ∗ ← [ 𝒂 1 𝒂 ′] ; 𝑩 ∗ ← [ 𝒃 1 𝒃 ′] ; 𝑪 ∗ ← [ 𝒄 1 𝒄 ′] ; 𝝀∗ 
← 

[ 
𝝀1 

𝝀′

] 

5 For 𝑟 = 2 , 3 , … , 𝑅 

6 Scale the 𝑖 th components of 𝑨 ∗ , 𝑩 ∗ , 𝑪 ∗ by 3 
√ 

𝝀∗ 
𝑖 

7 𝑨 𝑟 , 𝑩 𝑟 , 𝑪 𝑟 ← Nadam ( 𝑓 , { 𝑨 ∗ , 𝑩 ∗ , 𝑪 ∗ } ) 

8 Normalize the 𝑖 th components of 𝑨 𝑟 , 𝑩 𝑟 , 𝑪 𝑟 

and store the norm product into 𝝀𝑟 

9  𝑟𝑒𝑠 ←  − Tensor_Recon ( 𝑨 𝑟 , 𝑩 𝑟 , 𝑪 𝑟 , 𝝀𝑟 ) 

10 𝒂 ′ , 𝒃 ′ , 𝒄 ′ , 𝝀′
← CP-ALS (  𝑟𝑒𝑠 , 1) 

11 𝑨 ∗ ← [ 𝑨 𝑟 𝒂 ′] ; 𝑩 ∗ ← [ 𝑩 𝑟 𝒃 ′] ; 𝑪 ∗ ← [ 𝑪 𝑟 𝒄 ′] ; 𝝀∗ 
← 

[ 
𝝀𝑟 

𝝀′

] 

12 End For 

13 Return a set of solutions 

{ 𝒂 1 , 𝒃 1 , 𝒄 1 , 𝝀1 } , { 𝑨 2 , 𝑩 2 , 𝑪 2 , 𝝀2 } , … , { 𝑨 𝑅 , 𝑩 𝑅 , 𝑪 𝑅 , 𝝀𝑅 } 

e End Algorithm 

3. Materials and experiments 

3.1. Simulation 

Third-order tensors  ∈ ℝ 20×10×8 , with rank 𝑅 varying from 1 to 10, 
were simulated from the outer product of factors randomly sampled 
from a standard normal distribution. We added Gaussian white noise 
to the simulated tensor  with a SNR of 2. We then performed tensor 
decomposition with rank R on  using NASCAR (Nadam inside) as well 
as SRSPCD (ALS inside) ( Li et al., 2018 , 2017 ). For a fair comparison, 
we used the same random initializations for both methods. We eval- 
uated the performance using the averaged congruence product (ACP) 
( Tomasi and Bro, 2005 ). ACP is a measure of correlation between com- 

ponents defined as 

ACP = max 
𝑷 

tr 
((
𝑨 ⊤𝑨̂ 

)
∗ 
(
𝑩 ⊤𝑩̂ 

)
∗ 
(
𝑪 ⊤𝑪̂ 

)
𝑷 
)

where 𝑨 , 𝑩 , 𝑪 are the ground truth loading matrices and 𝑨̂ , 𝑩̂ , 𝑪̂ their 
estimated counterparts, 𝑷 is a permutation matrix accounting for the 
ambiguity of the ordering of the solutions ( Harshman, 1970 ) and tr ( ⋅) is 
the trace of a matrix. We evaluated ACP of the solutions obtained from 

both NASCAR and SRSCPD as a function of 𝑅 . For each 𝑅 , we ran 100 
Monte Carlo trials and generated box plots of the ACP for visualization. 
For each simulated trial above, we also recorded the run time for each 
of the methods. 

3.2. In-vivo language task fMRI data 

The minimally preprocessed language task fMRI data from 40 ran- 
domly selected subjects (16 male and 24 female, age 26-30, all right- 
handed) in the publicly available Human Connectome Project (HCP) 
database ( Glasser et al., 2013 ; Van Essen et al., 2013 ) were used. The 
list of subject IDs is shown in the supplementary materials. These data 
were acquired for two independent sessions with opposite phase encod- 
ing direction (LR, RL) using a gradient-echo EPI sequence (2 mm × 2 
mm × 2 mm voxels, TR = 720 ms, TE = 33 . 1 ms), where each session ran 
3 mins and 57 secs with 316 frames in total. 

Task fMRI was used here, instead of resting-state fMRI, because the 
task designs and the results from the generalized linear regression model 
(GLM) ( Barch et al., 2013 ) can be used for validation purpose. However, 
we note that, through the use of BrainSync alignment, NASCAR can be 
applied to a range of multi-subject fMRI recording paradigms including 
resting-state fMRI and self-paced event-related fMRI studies. 

The language processing task was selected because it consists of sev- 
eral spatially overlapped networks that span a substantial fraction of 
the cortical surface. The design of the language processing task, de- 
veloped by ( Binder et al., 2011 ), consists of four interleaved blocks 
of a story task and a math task. In each story block, the subjects 
were presented with a brief auditory story (Present Story) followed 
by a forced-choice question about the topic of the story (Question 
Story). Then, the subjects chose one answer from two alternatives by 
pressing a button (Respond Story). In each math block, the subjects 
were asked to perform some addition or subtraction calculation (Ques- 
tion Math) after listening to a series of arithmetic operations (Present 
Math). Finally, similar to the story blocks, the subjects selected one an- 
swer from two alternative choices (Respond Math). The order of task 
blocks is identical within each session but different between the two 
sessions. 

The results below used language task fMRI data resampled onto the 
cortical surface extracted from each subject’s T1-weighted MRI and co- 
registered to a common surface atlas as described in Glasser et al., 2013 ). 
Each session was represented as a 𝑉 × 𝑇 matrix, where 𝑉 ≈ 22 𝐾 is the 
number of vertices across the two hemispheres and 𝑇 = 316 is the num- 
ber of time points. The time series at each vertex was normalized to 
have zero mean and unit norm. We applied the BrainSync algorithm to 
temporally align all sessions of task fMRI datasets to the first session of 
the first subject (this reference was HCP subject 100307). Although we 
did not find significant difference in the choice of reference subject in 
this study, we note that a pair-wise group alignment could be used to 
avoid potential bias towards one specific subject ( Akrami et al., 2019 ). 
The temporally aligned task fMRI data were then combined along the 
third dimension, forming a third-order data tensor  ∈ ℝ 𝑉 ×𝑇×𝑆 , where 
𝑆 = 80 is the number of subjects (40) by sessions (2). Analogous to rank- 
reduction preprocessing methods used in ICA, we performed a greedy 
CP decomposition ( Acar et al., 2011 ) to the tensor  to reduce its rank to 
20. Specifically, we recursively fit a rank-1 component to the data ten- 
sor and then subtracted this from the residual data tensor until we had 
found 20 components in total. Next, we applied the NASCAR algorithm 

to the rank-reduced tensor to extract brain networks with a desired rank 
of 20. The rank 20 here is chosen to match the rank used in the group ICA 
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method ( Calhoun et al., 2001b ) against which we compare below. The 
regularization parameter 𝜇 in Eq. (3) and ( (4) was chosen to be 0.001. 
We found in practice that this value works reasonably well across dif- 
ferent fMRI datasets, possibly because we normalize each time-series to 
zero mean and unit magnitude before applying the decomposition. Our 
experiments have also shown that results are robust to a wide choice 
of parameter values as illustrated in Fig. S1 in the supplementary mate- 
rials. Smaller values, or even no regularization, produced very similar 
results. Note that despite the negligible difference in results without reg- 
ularization, using a non-zero regularization parameter is still prudent as 
theoretically the magnitude ambiguity issue ( Section 2.3 ) can still oc- 
cur. Large values, however, should be avoided to prevent the regularizer 
reducing the fit of the tensor to the data in Eq. (3) . 

We also ran group ICA on the same language task fMRI dataset as 
a comparison. Following the procedure described in ( Calhoun et al., 
2001b ), the (temporally) PCA-denoised (to rank 40) individual language 
task fMRI data was temporally concatenated, then the temporal dimen- 
sionality was further reduced to 20 using PCA again and a spatial group 
ICA performed to extract independent components. We also compared 
with the Canonical ICA (CanICA) method ( Varoquaux et al., 2010 ), 
where a canonical correlation decomposition was applied in the second 
stage instead of the PCA as in ( Calhoun et al., 2001b ). Parameters were 
identical to those used in ( Calhoun et al., 2001b ) as a fair comparison. 

3.3. Reproducibility analysis 

We investigated the reproducibility of NASCAR across two sessions 
of the same set of 40 subjects’ language task fMRI data. NASCAR was 
applied to each session independently and an averaged cross-correlation 
between matched pair-wise components in two sessions was computed 
as a measure of reproducibility or consistency ( Varoquaux et al., 2010 ). 
Specifically, a cross-correlation matrix 𝑸 ∈ ℝ 𝑅 ×𝑅 was first computed: 

𝑸 = 𝑨 ⊤
1 𝑨 2 

where 𝑨 1 and 𝑨 2 are the spatial modes of the solutions obtained from 

the two sessions, respectively. Then the rows and columns of 𝑸 was re- 
ordered into 𝑸̂ such that the spatial maps in 𝑨 1 and 𝑨 2 are optimally 
matched to each other using the stable matching algorithm ( Gale and 
Shapley, 1962 ). Next, the absolute values of the diagonal elements of 𝑸̂ 

were sorted in a descending order, denoted as 𝒒 ∈ ℝ 𝑅 ×1 . The “𝑡 ” repro- 
ducibility measure used in ( Varoquaux et al., 2010 ) was then equivalent 
to the average of the elements of 𝒒 : 

𝑡 = 
1 

𝑅 

𝑅 ∑

𝑖 =1 

𝒒 𝑖 

where 𝑅 = 20 is the total number of components in our experiment. 
Since we do not expect the subject-specific components shown below to 
be consistent across sessions, we generalized the “𝑡 ” measure to a “𝑡 𝑟 ”
measure: 

𝑡 𝑟 = 
1 

𝑟 

𝑟 ∑

𝑖 =1 

𝒒 𝑖 (5) 

indicating the change of consistency as a function of rank 𝑟 . Hence, the 
“𝑡 ” measure is the special case of the “𝑡 𝑟 ” measure when 𝑟 = 𝑅 . 

We repeated the analysis above and computed reproducibility using 
both group ICA and CanICA as a comparison. We also explored repro- 
ducibility of the subject mode across the two sessions in NASCAR as the 
subject mode is a unique property available in NASCAR but absent from 

the ICA methods. 

3.4. Stability analysis 

We investigated the stability of NASCAR, group ICA and CanICA by 
running them on the language task fMRI data 100 times, each time with 
different random initializations. Thus, 2000 (20 networks/run × 100 

runs) brain networks were obtained in total. We then projected the spa- 
tial map of these 2000 networks non-linearly onto a 2D plane using 
the curvilinear component analysis (CCA) algorithm ( Demartines and 
Hérault, 1997 ) provided by the ICASSO software ( Himberg and Hyväri- 
nen, 2003 ) for easy visualization. For the tensor decomposition we 
color-coded the projected spatial maps with the number of participating 
subjects for each network. A subject is defined to participate in a par- 
ticular network if the values of the normalized session mode (the third 
dimension of the tensor) exceeded 0.05 in any of the two sessions for 
that subject. The threshold was chosen heuristically based on the overall 
histogram of the session modes from all decomposition results. 

Quantitatively, for each method, we randomly selected a pair of so- 
lutions from the 100 runs with replacement and computed the “𝑡 𝑟 ” in 
Eq. (5) as a measure of consistency across runs. We repeated the random 

selection 1000 times and visualized the results using box plots. 
We also investigated stability of group ICA, CanICA, and NASCAR 

using bootstrap analysis. We repeated the decompositions for each of 
100 bootstrap resamples and used the CCA embedding and color coding 
as described above to visualize the results. 

3.5. Are BrainSync and Nadam essential for successful brain network 
identification? 

For task fMRI, data are typically aligned with respect to the stimulus 
timing. Additional synchronization across subjects or sessions is usually 
not performed. However, as discussed earlier, temporal synchronization 
may not be strictly satisfied across subjects even when an identical task 
design is used. Responses to tasks from individual subjects can differ in 
their latencies, especially for higher-level cognitive tasks. Further, any 
brain networks that are independent from the task designs cannot be 
found without temporal synchronization. To explore the additional ben- 
efit that might be gained from synchronizing time series across subjects 
using BrainSync, we repeated our experiments as described above on 
one session of the 40 subjects’ language task fMRI data, where identical 
task design was used to all subjects, with and without BrainSync. 

Furthermore, to investigate the impact of using Nadam relative to 
ALS, we repeated the tensor-decomposition composition using our ear- 
lier SRSCPD framework ( Li et al., 2018 , 2017 ) on the same language 
task fMRI data as describe above. 

4. Results and discussion 

4.1. Simulation 

Fig. 2 (a) shows box plots of the ACP over 100 Monte Carlo trials as 
a function of the rank 𝑟 using NASCAR (red) and SRSCPD (blue). When 
𝑟 is small, they perform approximately equally well. However, NASCAR 
outperforms SRSCPD by a margin that increases with 𝑟 , indicating an 
improved robustness of NASCAR over SRSCPD. 

Fig. 2 (b) shows box plots of the run time corresponding to the sim- 
ulated trials in (a). The run time is substantially lower using NASCAR 
than that using SRSCPD and the difference becomes larger and larger 
as 𝑟 increases, indicating a significant improvement of the scalability to 
large dataset and higher rank decomposition. The difference in run time 
is largely due to the substantially fewer total iterations through the data 
required with NASCAR relative to SRSCPD. 

4.2. In-vivo language task fMRI data 

Fifteen components were identified by the NASCAR method that 
could plausibly represent networks or other physiological components 
in the sense that the spatial maps are smooth and are found in most 
subjects. Of these, twelve appear consistent with known networks as 
shown in Fig. 3 (the remaining three are shown in Fig. S2 in supple- 
mentary materials). For each component, the left sub-figure shows the 
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Fig. 2. Simulation results. (a) Box plots of ACP as a function of 𝑟 for NASCAR 
in red and SRSCPD in blue; (b) box plots of the run time corresponding to the 
experiments in (a). The bottom part is magnified and shown on the top left 
corner for easy visualization. 

spatial map, the top right sub-figure shows the temporal dynamics over- 
laid with color-coded task design (math tasks shown in red and story 
tasks shown in blue) and the bottom right sub-figure shows the subject 
and session participation mode. 

Recall that task-timing is different between the two sessions but the 
BrainSync transform brings them into alignment as we have shown pre- 
viously ( Joshi et al., 2018 ). Similarly, BrainSync should also align not 
only responses to the stimuli across subjects but also underlying brain 
activity independent of the stimulus. The results here are aligned to the 
timing for the first session and the first (reference) subject. Applying the 
appropriate inverse BrainSync transform we can obtain the correspond- 
ing network dynamics for each subject. 

Fig. 3 (a) shows a classic language network where activity in Broca’s 
area, Wernicke’s area, and the anterior temporal lobe are strongly inter- 
correlated. The spatial map of this network is consistent with the result 
shown in Fig. 8 in ( Barch et al., 2013 ), which is the spatial response to 
the Story-Math task contrast (St-Ma) obtained using a GLM from 77 sub- 
jects. Unlike in that case, here the component is obtained directly from 

the data without knowledge of the task. The associated temporal mode 
shows a strong correlation to the Story-Math contrast with a maximum 

lagged correlation of 𝑟 = 0 . 77 (uncorrected 𝑝 -value < 10 −60 ) at a lag of 
𝑑 = 3 . 6 s from the design to the response, consistent with the latency 
associated with the hemodynamic response function. 

Fig. 3 (b) shows a clear auditory network in response to the auditory 
task stimuli (note again that both story and math descriptions in the first 
phase of the tasks were given as auditory presentations), where spatially 
bilateral auditory cortex was activated and temporally it is significantly 
correlated with the combined Presentation blocks from both story and 
math tasks, i.e. Present Story + Present Math ( 𝑟 = 0 . 43 , 𝑝 = 9 × 10 −16 , 

𝑑 = 5 . 8 s). 

The temporal dynamics of Fig. 3 (c), (d), (e), (f), and (g) show 

significant correlations with the combined Response blocks from both 
story and math tasks, i.e. Respond Story + Respond Math, with a 
short but variable delay, suggesting that they correspond to brain 
activity during the Response period of the tasks. Indeed, the spa- 
tial pattern of these components indicates a frontoparietal attentional 
control network (FPACN) ( Hopfinger et al., 2000 ; Marek and Dosen- 
bach, 2018 ) ( 𝑟 = 0 . 26 , 𝑝 = 1 . 5 × 10 −6 , 𝑑 = 7 . 2 s) for (c), a visual network 
(VN) ( 𝑟 = 0 . 29 , 𝑝 = 1 . 3 × 10 −7 , 𝑑 = 2 . 9 s) for (d), an extended language 
network or reading network (LN) ( Dehaene et al., 2010 ; Fedorenko and 
Thompson-Schill, 2014 ) ( 𝑟 = 0 . 28 , 𝑝 = 3 . 3 × 10 −7 , 𝑑 = 1 . 4 s) for (e), a 
right-hand-visual co-activation (RH-V) ( 𝑟 = 0 . 36 , 𝑝 = 1 . 7 × 10 −11 , 𝑑 = 2 . 2 

s) for (f), and a cingulo-opercular network (CON) ( Sylvester et al., 
2012 ) ( 𝑟 = 0 . 28 , 𝑝 = 2 . 4 × 10 −7 , 𝑑 = 5 s) for (g), all reflecting the sub- 
jects’ response or brain networks activated in order to answer the task 
questions. 

The spatial maps for Fig. 3 (h) and (i) show two sub-components of a 
typical default mode network (DMN) with classic areas, such as medial 
prefrontal cortex, precuneus and posterior cingulate cortex, temporal- 
parietal junction, highly activated ( Raichle, 2015 ; Simony et al., 2016 ). 
The DMN was first known as a task-negative network ( Fox et al., 
2005 ; Raichle et al., 2001 ) and in fact a strong negative correlation 
between the temporal mode of (h) and (i) and the task blocks can be 
clearly observed both visually (dips during tasks and peaks between 
tasks) and quantitatively ( 𝑟 = −0 . 3 , 𝑝 = 3 . 5 × 10 −8 , 𝑑 = 4 . 3 s for (h) and 
𝑟 = −0 . 22 , 𝑝 = 4 . 2 × 10 −5 , 𝑑 = 7 . 9 s for (i)). 

Fig. 3 (j) shows a spatially global, oscillatory (~0.3 Hz) and non- 
task-related activity, suggesting that it may represent a residual respira- 
tion effect (Resp) common across subjects. Further investigation shows 
that this component, as shown in Fig. 4 , is strongly correlated ( 𝑟 = 0 . 67 ) 
with the actual abdominal respiratory measure (also provided as part 
of the physiological data in the HCP dataset). To obtain the average 
abdominal respiratory signal, we applied the BrainSync transformation 
matrices obtained from the fMRI data from each subject to that sub- 
ject’s respiratory data and then averaged across subjects. The resulting 
time series, overlaid with the temporal mode from Fig. 3 (j), is shown in 
Fig. 4 . 

Fig. 3 (k) shows a sensorimotor network (SMN) around the tongue 
area. Fig. 3 (l) shows a brain network potentially related to mem- 
ory retrieval (Mem), although it is not well reported in the literature 
( Power et al., 2011 ). Both of these two networks are non-task-related 
as they do not correlate with any of the tasks or sub-tasks. Note that 
the synchronization of non-task-related activity across subjects using 
BrainSync allows us to identify components (j), (k), and (l) from the 
third-order tensor in addition to task-related networks. 

All twelve identified networks show strong subject modes in almost 
all 40 subjects, indicating that these networks are indeed common across 
subjects. However, considerable differences in the subject mode among 
these subjects are also observed. For example, in the extended language 
network shown in Fig. 3 (e), the values of the subject mode span the 
range from 0.04 to 0.174. Similarly, the counterpart for the DMN shown 
in Fig. 3 (h) has a range from 0.065 to 0.166. These differences in the 
subject mode are presumably indicative of the degree of activity in that 
particular network for each subject, so that they could be used as fea- 
tures to study inter-subject variability of participation of networks in 
specific tasks or to study how the participation level of networks are al- 
tered during development and aging, or by neurological disease ( Li et al., 
2020 ). 

The remaining three plausible but un-recognized components also 
exhibit smooth spatial maps as shown in Fig. S2 (a)-(c) in the supple- 
mentary materials. For example, Fig. S2 (a) shows bilateral activations 
in the sensorimotor foot area. As with the components in Fig. 3 , the 
subject mode shows participation across all subjects, which is consis- 
tent with these networks being common to all 40 subjects. Inspection 
of the remaining five components of the rank-20 decomposition reveals 
that their subject modes have a large value for a single subject, indicat- 
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Fig. 3. Identified and recognized components using NASCAR on language task fMRI data. (a) Classic language network in response to Story-Math contrast (St-Ma); 
(b) Auditory network (AN); (c) Frontoparietal attentional control network (FPACN); (d) Visual network (VN); (e) Extended language network (LN); (f) Right-hand- 
visual co-activation (RH-V); (g) Cingulo-opericular network (CON); (h) First sub-component of the default mode network (DMN); (i) Second sub-component of the 
DMN; (j) Respiratory effect (Resp); (k) Sensorimotor network (SMN) near the tongue area; (l) Memory-retrieval-related network (Mem). In each component, the 
left sub-figure shows the spatial map, the top right sub-figure shows the temporal dynamics overlaid with color-coded task designs, and the bottom right sub-figure 
shows the subject/session participation mode. 

ing that these are likely artifacts originating from that subject. Fig. S2 
(d) shows one such component out of the five as an example. Further ex- 
ploration of components with higher rank ( 𝑅 > 20 ) on this dataset only 
revealed additional subject-specific or noisy components. 

When applying group ICA to the same language fMRI dataset, we 
were able to identify seven components as shown in Fig. S3 in the sup- 

plementary materials. Of the seven components, (a) VN and (b) AN 

can be clearly recognized. Another five networks exhibit spatial maps 
similar to those identified by the NASCAR method in Fig. 3 , suggest- 
ing a FPACN for (c), a DMN for (d), a RH-V for (e), a SMN for (f), 
and a Mem for (g). The other components found using the NASCAR 
method, such as St-Ma, LN, and Resp, were not obviously identifiable 
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Fig. 4. Plot of the respiratory component (red) obtained from the tensor decom- 
position (temporal mode of Fig. 3 (j)) and the averaged abdominal respiratory 
measure across subjects (blue). Only the first 100 seconds are plotted and both 
signals were normalized to have zero mean and unit norm for easy visualization 
and comparison. 

Fig. 5. Averaged inter-session correlation 𝑡 𝑟 as a function of 𝑟 . 

in the ICA results, as shown in Fig. S4 for the remaining 13 com- 
ponents. When using CanICA, we also identified seven components, 
which were almost identical to those using group ICA as described 
above. 

4.3. Reproducibility analysis 

Fig. 5 shows the averaged reproducibility metric 𝑡 𝑟 between two ses- 
sions as a function of 𝑟 . Overall, for all three methods, the top few com- 
ponents are fairly consistent across sessions with high reproducibility 
values ( > 0.75). As 𝑟 increases, 𝑡 𝑟 exhibits a decreasing trend indicat- 
ing that more inconsistent subject-specific or noisy components were 
discovered during the decomposition. 

The results for group ICA and CanICA are comparable and a slightly 
higher correlation was observed in CanICA than group ICA in higher 
ranks. In contrast, NASCAR outperforms both group ICA and CanICA by 
a large margin through the entire range of 𝑟 . 

We also observed a similar trend in reproducibility of the subject 
mode from the NASCAR results, as shown in Fig. S5. 

4.4. Stability analysis 

Fig. 6 (a)-(c) show scatter plots of the projected spatial maps ob- 
tained using group ICA, CanICA and NASCAR, respectively, with dif- 
ferent random initializations. Each dot represents a single component. 
The NASCAR results are color-coded to indicate the number of subjects 
that exhibit that component (session mode value > .05). Fig. 6 (d)-(f) 

show copies of (a)-(c), respectively, with the addition as gray stars of 
the components from the original decomposition (results in Fig. 3 and 
Figs. S1-S3), which we used to identify the brain networks described 
above. We also annotate each of these components (7 for ICA and 12 for 
NASCAR). 

In these results, tight clusters indicate a strong similarity in com- 
ponents for different initializations, and hence less dependence of de- 
composition method on initialization. While all three methods clearly 
exhibit clustering behavior ( Fig. 6 (a)-(c)), the NASCAR clusters are 
consistently tighter than those for ICA and CanICA. By overlaying the 
results from Fig. 3 and Figs. S1-S2, we see how these clusters map to 
identified networks ( Fig. 6 (d)-(f)). As shown in Fig. 6 (f), the color 
of the components in the clusters that contain the 12 recognized brain 
networks found using NASCAR indicate a strong participation in each 
network across subjects. Direct examination of the subject modes for 
each run and network revealed that all 12 networks were found for all 
subjects in each of the 100 runs using NASCAR. Of the three plausible 
but un-recognized components, P2 is found consistently across subjects 
and runs with little variability. P1 and P3 are also found consistently 
across subjects but are more sensitive to initialization leading to more 
spread in the clusters. Finally, the subject-specific components, N1, N3, 
N4 and N5, are also found consistently across runs, with the blue col- 
oring indicating that they are unique to a single subject. The ICA and 
CanICA results also show clear clustering behavior for each of the iden- 
tified networks, Fig. 6 (d) and (e), but with an increased sensitivity to 
initialization compared to NASCAR. 

Quantitatively, Fig. 7 shows the pair-wise consistency measures 𝑡 𝑟 as 
a function of 𝑟 . Similar to Fig. 5 , the correlation between pairs of runs 
decreases as 𝑟 increases for all three methods. The results using NASCAR 
confirmed our observation in Fig. 6 that the identified 12 common net- 
works ( 𝑟 = 1 , … , 12 ) are highly consistent ( 𝑡 𝑟 ≈ 1 ) across runs and that 
𝑡 𝑟 starts decreasing only as more subject-specific components are iden- 
tified. The correlation values are substantially higher in NASCAR than 
that in either CanICA or group ICA through the entire range of 𝑟 , al- 
though CanICA exhibits an improved robustness over group ICA. 

Results obtained by decomposing 100 different bootstrap resamples 
of the data together with randomized initialization are shown in Fig. 8 . 
As might be expected, ICA, CanICA and NASCAR all show increased 
variability relative to the case where only the initialization is changed 
( Fig. 6 ). Visual inspection of Fig. 8 (a) reveals three or four clear clusters 
in the group ICA case (similarly in the CanICA case) whereas multiple 
clusters remain visible for NASCAR in Fig. 8 (c). There are exactly 12 
clusters with dense centroids that correspond to the 12 recognized com- 
ponents in Fig. 3 , indicating that they are robustly identified in each of 
the bootstrap runs as shown in Fig. 8 (f). Furthermore, the red or or- 
ange color of most points in these 12 clusters indicates that almost all 
subjects participate in these networks in each of the bootstrap runs. Con- 
versely the blue clusters in the peripheral area correspond to networks 
that are specific to a single subject and reproduced for that subject in 
multiple bootstrap runs. The corresponding quantitative measures 𝑡 𝑟 are 
shown in Fig. 9 where a similar trend is observed as Fig. 7 but with 
overall lower correlation values (note the difference in the scale of the 
y-axis). 

4.5. The necessity of BrainSync and Nadam in brain network identification 
from asynchronous multi-subject fMRI data 

Table 1 (3 rd column, yellow) summarizes tensor decomposition re- 
sults on the full BrainSync synchronized dataset using SRSCPD, our pre- 
viously described method based on alternating least squares (ALS) in 
combination with a warm start ( Li et al., 2018 , 2017 ). This method per- 
formed similarly to NASCAR, which assumes an identical model but re- 
places the ALS approach with a full gradient-based method. Most of the 
networks found were visually equivalent to those found using NASCAR. 
However, as listed in Table 1 (2 nd column, red), the FPACN, CON, DMN, 
and Mem components were not found using SRSCPD. Also, St-Ma and 
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Fig. 6. Stability analysis results with different random initializations. (a) Scatter plot of the projected spatial maps obtained using group ICA; (b) The counterpart 
to (a) when using CanICA; (c) The counterpart to (a) when using NASCAR; (d) Same as (a) but with single run results ( Fig. 3 and Figs. S1-S3) plotted as stars and 
annotated; (e) The counterpart to (d) when using CanICA with single run results; (f) The counterpart to (d) when using NASCAR with single run results. For (c) and 
(f), the color of each dot (component) represents the number of subjects participating in that component. Acronyms and abbreviations of the identified components 
are given in the caption of Fig. 3 . P1-P3: three plausible but un-recognized components (Fig. S2 (a)-(c)); N1-N5: five subject-specific components (Fig. S2 (d)). The 
color bar indicates the number of subjects that participate in each of the components found and is used to color code the points (components) in (c) and (f). 

Fig. 7. Pair-wise correlations over 1000 randomly selected pairs of solutions in Fig. 6 as a function of 𝑟 . 
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Fig. 8. Stability analysis results using bootstrapped data with different random initializations for each run; (a) and (d): Group ICA; (b) and (e) CanICA; (c) and (f) 
NASCAR. See caption for Fig. 6 . 

Fig. 9. Pair-wise correlations over 1000 randomly selected pairs of solutions in Fig. 8 as a function of 𝑟 . 

VN were each split into two components during the decomposition. 
These results are indicative that NASCAR provides a more robust de- 
composition than SRSCPD. 

We also examined what happens without synchronization. In this 
case we could only use one of the two sessions since timing is differ- 
ent for the tasks in the two sessions. As shown in Table 1 (4 th column, 
blue), when using NASCAR on synchronized single-session dataset, we 

are still able to identify the 12 common brain networks, although those 
plausible but un-recognized components (Fig. S2 (a)-(c)) are missing 
from the decomposition. However, when applying NASCAR to the un- 
synchronized dataset ( Table 1 , last column, green) only the St-Ma and 
AN were found using NASCAR, but even then, only in a subset of sub- 
jects. We believe the difference is due to the differing latencies of the 
subjects’ responses to the task. With the tensor representation, the time 
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Table 1 
Summary of brain networks identified in language task fMRI data. 

series are assumed to be approximately equal across subjects. Then tem- 
poral synchronization using BrainSync is a key factor in successful iden- 
tification of brain networks. Note that this is not the case in group ICA 
or CanICA where time series are concatenated across subjects so that we 
do not assume temporal synchrony in the ICA decomposition. For this 
reason, ICA-based methods are able to identify multiple networks with- 
out synchronization, while NASCAR requires synchronization to work. 
However, as shown in the earlier figures, with the inclusion of Brain- 
Sync synchronization, it appears that NASCAR can more reliably identify 
task-related network components that group ICA and CanICA. Moreover, 
components that are independent of the task, such as the respiratory and 
sensory motor components in Fig. 3 , can also be identified as a result of 
synchronization. 

5. Conclusion 

Using NASCAR with BrainSync, we identified and recognized 
twelve spatially overlapped and temporally correlated common net- 
works across multiple subjects: seven task-related networks, two sub- 
components of the default mode network, respiratory effect, a senso- 
rimotor activity, and a memory-retrieval-related network in the lan- 
guage task fMRI data. Although we did not use any prior information 
regarding the task designs, our results not only replicated the task tim- 
ing, but also showed expected differences in the temporal dynamics of 
those networks. These networks were not all found using the group ICA 
and CanICA method or when BrainSync synchronization or Nadam was 
not used. The bootstrapping results show that NASCAR is potentially ro- 
bust in identifying the spatial, temporal and subject-dependent behavior 
of brain networks that compares favorably with ICA-based approach. 
Furthermore, synchronization of time-series across subjects prior to 
decomposition can allow identification of components independent 
of task. 
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