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Introduction 

Functional MRI acquired using naturalistic stimulus paradigms, such as movie-watching, 

incorporate dynamic and diverse sensory information. It has been shown to be more ecologically 

valid than traditional task-based fMRI and produce brain responses with higher stability than 

resting-state fMRI1. Existing tools for analyzing this type of fMRI data often assume perfect 

temporal synchronizations between subjects, which, however, may not be valid due to differing 

responses and/or latency to the naturalistic stimuli in different subjects. Besides, popular methods 

such as inter-subject correlation, yield limited information about brain response patterns. Although 

commonly used independent component analysis2 can discover more structures, it imposes 

independence constraint on either the spatial or temporal domain, which may not be 

physiologically realistic. To address these issues, we applied a combination of a temporal 

synchronization technique (BrainSync Alignment3,4) and a tensor decomposition method 

(NASCAR5) to movie-watching data. The results showed that our method can provide rich 

information about the population’s common responses to the naturalistic stimuli, yet with a 

parsimonious model. 

Methods 

The minimally preprocessed 7T movie-watching fMRI data of 110 subjects from the Human 

Connectome Project were used6,7. Each subject was recorded 4 fMRI sessions while watching 

audio-visual movies, which consist of film segments interleaved with rest periods. Each session 

ran ~15min (TR=1s). The fMRI data were resampled onto the cortical surface and co-registered to 

a common surface atlas. Each scan was represented as a V×T matrix (V≈22K is the number of 

vertices across the two hemispheres, T≈900 is the number of time points). For each movie, we 

applied BrainSync Alignment (BSA) to jointly synchronize fMRI data across all subjects, Fig. 1a. 

For Movie 1, we formulated a tensor χ of size V×T×S by concatenating the synchronized fMRI 

data along the 3rd dimension. NASCAR was then applied to approximate χ as a sum of 20 rank-1 

tensors 𝜆𝑟𝒂𝑟⨂𝒃𝑟⨂𝒄𝑟, each representing a distinct brain network which is composed of a spatial 

activation map (𝒂) , a temporal dynamic (𝒃), and a subject participation level (𝒄). We also 

extracted 20 components using the spatial ICA (sICA) for comparison. We used the temporal mode 

of the auditory network (Fig 1b), from Movie 1 to predict soundtrack loudness of other movies by 
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transferring that auditory temporal response from G1 to each subjects’ space in other sessions 
through G2 using a cascaded (invertible) BSA. The individual subjects’ responses were then 

averaged together as the final prediction. Loudness measures, used as the “ground truth”, were 

extracted using MIRtoolbox8 and convolved with a double gamma HRF. For sICA, we applied a 

pairwise BrainSync between two sessions of each subject to predict the responses, which were also 

averaged across all subjects. 

Results 

Fig. 1b shows the spatial maps of two networks identified using BSA+NASCAR and sICA. Both 

methods capture activations in auditory and visual cortex. Since the latter enforces spatial 

independences, spatial overlaps between the networks can be underestimated as shown in Fig. 1b. 

Fig 1c quantitatively confirms this observation by comparing the inter-network cross-correlation 

matrices between the two methods. Fig 2a shows the normalized sum of squared reconstruction 

error as a function of the number of identified networks. The errors are consistently lower using 

our method than that with sICA. Predictions of the loudness using the auditory temporal dynamics 

from BSA+NASCAR are also better correlated with loudness measures, for all 3 movies, Fig. 2b,c. 

Conclusion 

Our framework decomposes naturalistic fMRI data into brain networks under more physiologically 

valid assumptions, resulting in better stimulus neural encoding-decoding and better fit to the data 

than ICA. 
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