
Cortical parcellation with graph representation learning on resting-state fMRI 

Yijun Liu1, Jian Li2,3, Jessica L. Wisnowski4,5, Richard M. Leahy1 

 
1 Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA. 2 A. A. Martinos 
Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA. 
3 Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 
Boston, MA. 4 Radiology and Pediatrics, Division of Neonatology, Children’s Hospital Los Angeles, Los Angeles, CA. 5 Keck School of 
Medicine, University of Southern California, Los Angeles, CA 

 

ABSTRACT 

Cortical parcellation, which partitions the cerebral cortex into a set 
of disjoint regions, facilitates interpreting and comparing 
neuroscientific discoveries as well as reducing computational 
complexities of analyzing high-dimensional neuroimaging data. It 
has a close relationship with graph learning as it can be formulated 
as a clustering/community detection problem. In recent years, a 
number of novel graph representation learning methods have 
emerged, such as DeepWalk (1). These methods have not yet been 

fully exploited in brain parcellation despite their applicability. The 
few publications that doapply graph representation learning to 
generate brain parcellations, such as (2), emphasize methodology 
and lack detailed comparisons with popular parcellation schemes.  

We introduce a set of novel cortical parcellations that use a recently 
developed graph node embedding method NetMF (3) which 
approximates DeepWalk (4) as matrix factorization. We construct 
a graph using a set of spatial maps of brain networks derived from 

resting-state functional magnetic resonance imaging (rsfMRI) data. 
Each map represents a different large-scale brain network. The 
spatial maps were obtained using a combination of temporal 
alignment (BrainSync (5, 6)) and a 3-way tensor decomposition 
method (NASCAR (7, 8)), which avoids imposing biologically 
implausible constraints such as orthogonality (as with PCA) or 
independence (as with ICA). We applied this method to minimally 
preprocessed 3T rsfMRI data for 500 subjects from the Human 

Connectome Project (HCP) (9, 10). We compared our parcellation 
with a comprehensive list of commonly used atlases (e.g., Yeo (11), 
Schaefer (12)) in terms of resting-state functional connectivity 
(RSFC) homogeneity and alignment with task contrasts, evaluated 
using a weighted average of task variance with parcels. In the 100-
parcel setting, our atlas possesses a similar delineation of motor and 
primary visual areas as the Schaefer atlas, but presents distinct 
divisions in a number of other regions (Fig. 1). Results show that 

our parcellation schemes outperform other commonly used atlases 
in terms of homogeneity measures (Fig. 2) and task alignment (Fig. 
3) across almost all scales (number of parcels). 
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Fig. 1. Visualization of our atlas and Schaefer atlas. Both with 100 parcels. 

 

Fig. 2. Difference of RSFC homogeneity between ours and matched baseline atlas 

of each test subject in the HCP dataset. Each violin plot represents the pair-wise 

differences on 500 test subjects. Values greater than zero indicate that our 

parcellation is more homogeneous than the compared baseline. 

 

Fig. 3. Difference of task variance evaluated on 100  independent data sets from 

HCP. Each violin plot represents the pair-wise difference of the weighted contrast 

variance of our parcellation against the matched baseline parcellation for each of 

the 47 unique task contrasts. Values smaller than zero indicate our parcellation has 

higher agreement with the task contrasts than the baseline. 
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