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ABSTRACT

Although substantial progress has been made in mapping the connectivity of cortical networks responsible for conscious awareness, 

neuroimaging analysis of subcortical networks that modulate arousal (i.e., wakefulness) has been limited by a lack of robust segmen-

tation procedures for ascending arousal network (AAN) nuclei in the brainstem. Automated segmentation of brainstem AAN nuclei 

is an essential step toward elucidating the physiology of human consciousness and the pathophysiology of disorders of consciousness. 

We created a probabilistic atlas of 10 AAN nuclei built on diffusion MRI scans of 5 ex vivo human brain specimens imaged at 750 μm 

isotropic resolution. The neuroanatomic boundaries of AAN nuclei were manually annotated with reference to 200 μm 7 Tesla MRI 

scans in all five specimens and nucleus- specific immunostains in two of the scanned specimens. We then developed a Bayesian 

segmentation algorithm that utilizes the probabilistic atlas as a generative model and automatically identifies AAN nuclei in a reso-

lution-  and contrast- adaptive manner. The segmentation method displayed high accuracy when applied to in vivo T1 MRI scans of 

healthy individuals and patients with traumatic brain injury, as well as high test–retest reliability across T1 and T2 MRI contrasts. 

Finally, we show through classification and correlation assessments that the algorithm can detect volumetric changes and differences 

in magnetic susceptibility within AAN nuclei in patients with Alzheimer's disease and traumatic coma, respectively. We release the 

probabilistic atlas and Bayesian segmentation tool to advance the study of human consciousness and its disorders.

This is an open access article under the terms of the Creative Commons Attribution- NonCommercial- NoDerivs License, which permits use and distribution in any 

medium, provided the original work is properly cited, the use is non- commercial and no modifications or adaptations are made.

© 2025 The Author(s). Human Brain Mapping published by Wiley Periodicals LLC.

The last two authors are co- senior authors.  
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1   |   Introduction

Over the past two decades, connectivity studies of cortical net-

works have begun to reveal the structural and functional cor-

relates of human cognition (Buckner and DiNicola 2019; Glasser 

et  al.  2016; Yeo et  al.  2011). Observations about the spatial 

and temporal dynamics of cortical network connectivity (Fox 

et  al.  2005; Horn et  al.  2014; Sporns et  al.  2005) have yielded 

insights into the neuroanatomic basis of language, memory, 

attention, emotion, and conscious awareness (Cole et al. 2014; 

Demertzi et al. 2019; Glasser et al. 2016; Medaglia et al. 2015). 

In parallel, network- based models of neuropsychiatric diseases 

have emerged, based on the observation that spatially disparate 

lesions can cause cognitive deficits and behavioral dysfunction 

by disrupting a shared network architecture (Bodien et al. 2017; 

Boes et al. 2015; Fischer et al. 2016; Snider, Hsu, et al. 2020).

Yet as cortical connectivity mapping has accelerated, progress 

in mapping the subcortical networks that modulate arousal (i.e., 

wakefulness) has lagged behind. Few studies have attempted to 

map the complex connectivity of brainstem networks (Beissner 

et al. 2014; Bianciardi et al. 2016; Edlow et al. 2012, 2016, 2024; 

Hansen et al. 2024; Li et al. 2021; Sclocco et al. 2018). As a result, 

fundamental questions about the pathogenesis of a broad range 

of disorders of arousal, including coma (Edlow et al. 2021), sud-

den infant death syndrome (Kinney and Haynes 2019), and post- 

COVID- 19 fatigue (Huang et al. 2021) remain unanswered. This 

gap in knowledge is partly attributable to the lack of robust and 

automated methods for segmenting the brainstem regions that 

comprise the ascending arousal network (AAN).

The brainstem AAN is made up of at least 10 neurotransmitter- 

specific regions (nuclei) that modulate arousal and ultimately con-

sciousness (Edlow et al. 2012; Parvizi 2001; Valenza et al. 2019). 

These regions, which our proposed algorithm segments, are the 

(predominantly) serotonergic dorsal raphe (DR) and median raphe 

(MnR), the noradrenergic locus coeruleus (LC), the cholinergic 

laterodorsal tegmental nucleus (LDTg) and pedunculotegmental 

nucleus (PTg), the glutamatergic parabrachial complex (PBC), 

pontis oralis (PnO) and midbrain reticular formation (mRt), 

the dopaminergic ventral tegmental area (VTA), and the multi- 

neurotransmitter periaqueductal gray (PAG). We henceforth refer 

to these 10 regions as AAN nuclei. Beyond arousal, these AAN 

nuclei are also central to many vital functions of the brainstem, in-

cluding respiration (Chamberlin and Saper 1994), sleep/circadian 

rhythm generation (Saper et al. 2005) and pain modulation (Mayer 

et al. 1971; Reynolds 1969).

To date, brainstem segmentation methods have mainly focused 

on the brainstem as a whole. The brainstem is extracted by seg-

mentation modules of most neuroimaging packages, such as 

“aseg” (Fischl et al. 2002) in FreeSurfer (Fischl 2012) or FIRST 

(Patenaude et al. 2011) in FSL (Smith et al. 2004). The whole brain-

stem has also been targeted in multi- atlas segmentation methods 

(Heckemann et al. 2006), as well as specifically designed methods, 

such as (Bondiau et al. 2005) based on a single labeled template, or 

(Lee et al. 2005, 2007) based on active contours.

Beyond whole- brainstem segmentation, several methods have 

segmented the brainstem into its three main neuroanatomic 

components—the medulla, pons, and midbrain—based on man-

ual procedures (Lechanoine et  al.  2021), geometric rules (Nigro 

et  al.  2014) or Bayesian methods (Ashburner and Friston  2005; 

Iglesias, Van Leemput, et al. 2015; Lambert et al. 2013). However, 

automated segmentation techniques for individual brainstem nu-

clei beyond simple registration to a single labeled template (e.g., 

the Harvard AAN Atlas) (Edlow et al. 2012, 2024) have not yet 

been developed. Recently, several teams of investigators leveraged 

ultra- high resolution imaging datasets to provide anatomic atlases 

of brainstem nuclei (Adil et al. 2021; Bianciardi 2021; Lechanoine 

et al. 2021), but these atlases do not segment all of the miniscule 

brainstem nuclei in the pontine and midbrain tegmentum that are 

critical to arousal and homeostasis.

Here, we develop a probabilistic brainstem AAN atlas from man-

ual tracings made on ex vivo MRI data acquired in five human 

brain specimens at 750 μm resolution, guided by 200 μm 7 Tesla 

(7 T) MRI scans in all five specimens and nucleus- specific immu-

nostains in two of the scanned specimens. Ex vivo MRI provides 

substantial improvements in signal- to- noise ratio and spatial res-

olution over in vivo MRI by reducing motion and enabling long 

scanning times (Edlow et  al.  2019; McNab et  al.  2009; Yendiki 

et al.  2022). These high- resolution ex vivo images facilitate pre-

cise manual delineation of AAN structures, which in turn enable 

building an atlas with a superior level of detail.

We then used the new probabilistic version of the Harvard AAN 

Atlas as the basis for the creation of a companion automated algo-

rithm that segments AAN brainstem arousal nuclei with in vivo 

MRI. The segmentation algorithm is based on Bayesian infer-

ence using generative models of brain MRI data (Ashburner and 

Friston  2005; Van Leemput et  al.  1999; Pohl et  al.  2006; Wells 

et al. 1996). Because the modeling of intensities is unsupervised, 

this approach allows investigators to apply atlases built in ex vivo 

brain specimens to the segmentation of in vivo MRI scans (Iglesias, 

Augustinack, et al. 2015; Iglesias et al. 2018; Saygin et al. 2017).

To demonstrate the translational potential of this automated 

segmentation tool, we apply it to a volumetric analysis of AAN 

brainstem nuclei in patients with Alzheimer's disease (AD) and 

hemmorhagic lesion intensity analysis acute traumatic disorders 

of consciousness (DoC), as compared to healthy human sub-

jects. We release the AAN automated segmentation tool, which 

we term AANSe gment , as part of the FreeSurfer neuroimaging 

package to facilitate a broad range of potential applications in 

the study of human consciousness and its disorders.

2   |   Methods

2.1   |   Ex Vivo Brain Specimen Overview

We analyzed five human brain specimens: two using histolog-

ical sectioning (S1, S2) and all using ex vivo MRI (S1, S2, S3, 

S4, S5). All brains were donated by individuals with no history 
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of neurological disease and who died of non- neurological 

causes. Consent for brain donation and research was provided 

by surrogate decision- makers as part of protocols approved 

by the Institutional Review Boards at Mass General Brigham 

(S1–S3) or at the Université de Tours (S4, S5). Postmortem ex-

amination of each brain specimen by a neuropathologist was 

grossly normal.

Brain specimens were extracted from the cranium and fixed in 

10% formalin (S1–S4) or 5% formalin (S5) for at least 20 months 

prior to ex vivo MRI. Immediately prior to scanning, all spec-

imens were transferred to a fomblin solution (Solvay Specialty 

Polymers, Bollate, Italy) to reduce artifacts related to mag-

netic susceptibility, as previously described (Edlow et al. 2019). 

Specimen demographics, causes of death, and fixation parame-

ters are summarized in Table 1.

2.2   |   Data Acquisition

2.2.1   |   Ex Vivo MRI

Each ex vivo brain specimen (S1–S5) was scanned on a 7 Tesla 

(7 T) Siemens Magnetom scanner and a 3 T Siemens Tim Trio 

scanner (Siemens Healthineers, Erlangen, Germany). The 

7 T Fast Low- Angle SHot (FLASH) sequence (Augustinack 

et al. 2005; Fischl et al. 2004) utilized the following parameters: 

TR = 40 ms, TE = 14.2 ms, flip angle = 20°, acquired at 200 μm 

isotropic spatial resolution. The 3 T diffusion- weighted steady- 

state free procession (DWSSFP) sequence (McNab et al. 2009) 

utilized the following parameters: TR = 38 ms, TE = 23 ms, flip 

angle = 60°, with 90 diffusion- encoding directions at an effective 

gradient strength of b = 3773 s/mm2 and 12 low- b images (where 

b = 0 s/mm2) acquired at 750 μm isotropic spatial resolution.

2.2.2   |   Histology and Immunostaining

The two specimens that underwent histological analysis (S1, 

S2) were sectioned and stained in the axial (i.e., transverse) 

plane using a standardized protocol, as previously described 

(Edlow et al. 2024). Briefly, the brainstem was dissected from 

the brain specimen via a transverse cut at the mesencephalic- 

diencephalic junction. Each brainstem was then separated into 

four blocks (medulla, caudal pons, rostral pons, and midbrain), 

which were embedded in paraffin. Serial sections were cut at 

10 μm thickness from the paraffin- embedded blocks using a 

microtome (LEICA RM2255 microtome, Leica Microsystems, 

Buffalo Grove, IL, USA). Every 250 μm, a section was stained 

with hematoxylin and eosin and counterstained with Luxol fast 

blue (H&E/LFB) for identification of cell bodies and myelin. 

Sections were then selected based on anatomic landmarks to 

identify brainstem arousal nuclei at the level of the rostral pons 

(PnO, MnR, LC, PBC, LDTg), caudal midbrain (mRt, VTA, PTg, 

DR, PAG) and rostral midbrain (mRt, VTA, and PAG). Tyrosine 

hydroxylase immunostaining was used to identify the VTA and 

LC, tryptophan hydroxylase staining to identify the MnR and 

DR, and H&E/LFB to identify the PnO, LC, PBC, LDTg, PTg, 

and PAG. A summary of the brainstem arousal nuclei that were 

assessed, along with their immunostaining and histological 

characteristics, is provided in Table 2. All histological sections 

were digitized with the NanoZoomer S60 Digital Slide Scanner 

TABLE 1    |    Demographics and details on postmortem fixation for all ex vivo brain specimens.

Specimen 

number Age Sex Medical history Cause of death

Postmortem 

fixation 

interval (h) Fixative

Fixation- 

to- 

imaging 

duration 

(M)

Histology 

included

1 60 F Cecal 

adenocarcinoma 

(metastatic), DVT, 

depression

Septic shock < 24 10% 

formalin

24 Yes

2 61 F HTN, ovarian 

cancer (metastatic)

Septic shock 72 10% 

formalin

20 Yes

3 50 M Depression, 

leukemia, Raynoud's 

phenomena, 

thromboembolism

DIC due to 

hemophagocytic 

lymphohistiocytosis

< 24 10% 

formalin

93 No

4 58 F Breast cancer, 

ulcerative colitis

PE and/or DAD 

in the setting of 

widely metastatic 

breast cancer

< 24 10% 

formalin

92 No

5 83 M Hyperlipidemia, 

chronic respiratory 

deficiency

Acute respiratory 

failure

23 5% 

formalin

50 No

Abbreviations: DAD, diffuse alveolar damage; DIC, disseminated intravascular coagulation; DVT, deep vein thrombosis; HTN, hypertension; PE, pulmonary 
embolism.
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(Hamamatsu Photonics). Digitized slides underwent a custom 

whole- slide image processing pipeline for white balance correc-

tion and contrast enhancement. We converted all histological 

slides to JPEG2000 format and previously released them through 

the Biolucida platform (MBF Bioscience) for visualization.

2.2.3   |   In Vivo MRI of Traumatic Brain Injury Patients

We utilized in vivo MRI data from 10 healthy control subjects 

and 18 patients with severe traumatic brain injury (TBI). The 

patients with severe TBI were scanned during the acute phase 

of injury in the intensive care unit as part of a previously pub-

lished observational study at Massachusetts General Hospital 

(Edlow et  al.  2017). Informed consent was obtained from the 

healthy control subjects and from surrogate decision- makers 

for the patients with severe TBI, in accordance with a protocol 

approved by the Mass General Brigham Institutional Review 

Board. Healthy controls had no history of neurological, psychi-

atric, or medical diseases. Pertinent inclusion criteria for pa-

tients with acute severe TBI were: a Glasgow Coma Scale (GCS) 

(Teasdale and Jennett 1974) score of less than or equal to 8 with-

out eye opening for at least 24 h post- injury and age 18–65 years. 

Individual subject information for the control and TBI cohorts 

can be found in Tables S1 and S2.

MRI data for all healthy subjects and patients with TBI were 

acquired on a 3 T Siemens Skyra scanner (Siemens Medical 

Solutions, Erlangen, Germany) using a 32- channel head 

coil. T1- weighted data were acquired using a MultiEcho 

Magnetization- Prepared RApid Gradient Echo (MEMPRAGE) 

sequence (TR = 2530 ms, TE = 1.69/3.55/5.41/7.27 ms, flip angle: 

7°) at 1 mm isotropic spatial resolution. A 3D susceptibility- 

weighted imaging (SWI) sequence (TR = 30 ms, TE = 20 ms, flip 

angle = 15°) was acquired for each subject at 0.86 × 0.86 × 1.8 mm 

spatial resolution.

2.2.4   |   Alzheimer's Disease Data

All T1 MRI data used for AD analysis was obtained from the 

Alzheimer's Disease Neuroimaging Initiative (ADNI) data-

base (adni. loni. usc. edu). The ADNI was launched in 2003 as a 

public- private partnership, led by Principal Investigator Michael 

W. Weiner, MD. The original goal of ADNI was to test whether 

serial magnetic resonance imaging, positron emission tomog-

raphy, other biological markers, and clinical and neuropsycho-

logical assessment can be combined to measure the progression 

of mild cognitive impairment and early AD. Specifically, we 

used T1 MRI images (scanned at approximately 1 mm isotro-

pic resolution) from 168 randomly- chosen subjects with AD 

(mean age: 75.53 ± 7.38, 80 females) and 215 age- matched con-

trol subjects (mean age: 76.09 ± 5.43, 96 females). AD subjects 

in this study were defined by ADNI as having (1) subjective 

memory complaints, (2) a score of 20–26 on the Mini Mental 

State Examination, (3) a Clinical Dementia Rating score of 0.5 

TABLE 2    |    Description of AAN nuclei, including their primary neurotransmitter- specific cell bodies, histological staining, and corresponding 

locations for manual annotation.

Brainstem arousal 

nucleus Abbreviation

ROI 

color

Primary 

neurotransmitter

Histology and 

immunohistochemistry

Volume of 

nucleus 

(voxels)

Volume of 

nucleus 

(mm3)

Dorsal raphe DR Serotonin Positive staining for 

tryptophan hydroxylase

429 181.2

Median raphe MnR Serotonin Positive staining for 

tryptophan hydroxylase

191 8.6

Locus coeruleus LC Norepinephrine Positive staining for 

tyrosine hydroxylase and 

visible on H&E- LFB

101 42.7

Laterodorsal 

tegmental nucleus

LDTg Acetylcholine Annotated with H&E- LFB 37 15.7

Parabrachial complex PBC Glutamate Annotated with H&E- LFB 170 71.6

Pontis oralis PnO Glutamate Annotated with H&E- LFB 372 156.9

Midbrain reticular 

formation

mRt Glutamate Annotated with H&E- LFB 1079 455.1

Pedunculotegmental 

nucleus

PTg Acetylcholine Annotated with H&E- LFB 298 125.6

Periaqueductal gray PAG Multiple Annotated with H&E- LFB 850 358.4

Ventral tegmental 

area

VTA Dopamine Positive staining 

for tyrosine hydroxylase

680 287.0

Note: Nucleus volumes and voxel counts (in terms of native 0.7 mm isotropic voxels in low- b space) were derived from averaging over manual annotations from each 
ex vivo brain specimen used for atlas construction. ROI colors are consistent with the colors used in the Harvard Ascending Arousal Network template (Edlow et al. 
2012, 2024).
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or 1 with a memory box score of 0.5 or greater, (4) delayed re-

call of one paragraph from the Wechsler Memory- Scale Revised 

Logical Memory 2 subscale dependent on education level, and 

(5) met the National Institute of Neurological Disorders and 

Stroke–Alzheimer's Disease and Related Disorders Association 

probable AD criteria (Petersen et al. 2010). Further clinical and 

imaging acquisition information for each subject can be found 

at adni. loni. usc. edu. All aforementioned ADNI subjects were 

used in previous classification analyses (Iglesias, Augustinack, 

et al. 2015; Saygin et al. 2017).

2.2.5   |   Human Connectome Project Data

We used 45 subjects from the Human Connectome Project 

(HCP) WU- Minn 1200 subject release dataset (Van Essen 

et  al.  2013) who underwent two separate scanning sessions 

(included as part of the “Retest Data” cohort) with the same 

scanning protocols to assess test–retest reliability. Specifically, 

we analyzed unprocessed T1- weighted (TR = 2400 ms, TE = 

2.14 ms, flip angle = 8°) and T2- weighted (TR = 3200 ms, TE 

= 565 ms, flip angle = 120°) MRI scans at 0.7 mm isotropic res-

olution. Further information can be found at db. human conne 

ctome. org.

2.3   |   Ex Vivo Manual Annotation of Brainstem 
Arousal Nuclei

For ex  vivo brain specimens with corresponding histologi-

cal sections (S1, S2), AAN nuclei were traced on the DWSSFP 

750 μm average low- b image, which was directly used for prob-

abilistic atlas construction, as described in Section 2.5.2. AAN 

nuclei in two specimens (S1, S2) were manually annotated in 

diffusion space for a prior study (Edlow et al. 2024); hence we 

performed manual annotations on diffusion low- b images for all 

specimens to maintain consistency. Tracing on the low- b image 

was performed with guidance from the 7 T 200 μm FLASH 

images, which provided contrast for the boundaries of smaller 

AAN nuclei. Although larger AAN nuclei such as the PAG, mRt, 

DR, and MnR possess sufficient contrast to annotate directly in 

the low- b images, the location and morphology of smaller neigh-

boring AAN nuclei are inferred in low- b space directly from 

FLASH space.

AAN nuclei labels were further refined in two of the ex vivo 

brain specimens (S1, S2) with tyrosine hydroxylase (for VTA 

and LC staining), tryptophan hydroxylase (for DR and MnR 

staining), and H&E/LFB (for all other AAN nuclei) to aid in 

translating the location and morphology of the nuclei from 

(ground- truth) histological to low- b space. Representative 

annotations of AAN nuclei for an ex  vivo brain specimen 

in histological, FLASH and low- b space, as well as for an 

in  vivo T1 scan, are illustrated in Figure  1. Manual tracing 

of AAN nuclei in ex  vivo brain specimens without histolog-

ical sections (S3–S5) was performed with guidance from the 

7 T 200 μm FLASH images, for which correlations between 

histological and MR contrast boundaries were extrapolated 

from S1 and S2. Specifically, for each specimen we observed 

that in the midbrain, the PAG, mRt, PTg and VTA all possess 

hyperintense FLASH contrast with respect to the hypointense 

contrast of the red nuclei, cerebral peduncles and tegmental 

white matter. In the pons, the LC is a distinct region with hy-

pointense FLASH contrast, the MnR is a hyperintense region 

along the tegmental midline, and the PBC is observed as a 

pair of hyperintense bands medial and lateral to the superior 

cerebellar peduncles. We have found that the neuroanatomic 

boundaries for the remaining AAN nuclei (PnO, LDTg, and 

DR) can be directly inferred based on the location of adjacent 

nuclei with observable FLASH contrast. Specifically, the lo-

cation of the PnO can be inferred from the lateral borders of 

the MnR; the location of the LDTg from the ventro- medial 

borders of the LC; and the location of the DR from the dor-

sal border of the MnR and the dorsal/caudal border of the 

PAG. Representative contrast boundaries between histologi-

cal space and FLASH space are illustrated in Figure S1. For 

all annotations, we also cross- referenced the neuroanatomic 

boundaries of each AAN nucleus with the Harvard Disorders 

of Consciousness Histopathology Collection (http:// histo path. 

nmr. mgh. harva rd. edu) and the Paxinos human brainstem 

atlas (Paxinos et  al.  2012). Details regarding the annotation 

protocol and anatomic locations of AAN nuclei have been pre-

viously described (Edlow et al. 2024).

2.4   |   In Vivo Manual Annotation of Brainstem 
Arousal Nuclei for Accuracy Assessment

To assess the accuracy of Bayesian segmentations on in vivo 

structural MRI scans in healthy brainstems and in the set-

ting of structural brainstem injury, a neuroanatomy expert 

(M.D.O.) manually annotated all AAN nuclei from in  vivo 

T1- weighted MRI scans in the 10 healthy control subjects 

and 10 patients from the TBI dataset. For the latter scans, 

we randomly chose a subset of 10 TBI patients who had ei-

ther significant deformation of the brainstem due to increased 

intraventricular pressure and/or herniation, or hemorrhagic 

lesions in the brainstem on the T1- weighted image and corre-

sponding SWI. The sensitivity of SWI to hemorrhagic lesions 

is illustrated in Figure S2.

Manual annotation was performed directly on the T1 images at 

1 mm isotropic resolution. Similar to ex vivo specimens without 

corresponding histology, in  vivo annotations first relied on di-

rect localization of nuclei with observed T1 contrast, such as the 

PAG, mRt, VTA, DR, and MnR. Annotation of smaller, neighbor-

ing AAN nuclei with no reliable T1 contrast was performed with 

guidance from the Harvard AAN atlas, a previously published 

AAN delineation protocol (Edlow et  al.  2012, 2024), and neu-

roanatomic boundaries from adjacent, more easily discernable 

AAN nuclei and brainstem structures from the Paxinos brain-

stem atlas (Paxinos et al. 2012). A representative T1 scan with 

illustrated steps of the in vivo manual annotation procedure is 

shown in Figure S3. A neuropathologist (H.C.K.) and neurolo-

gist (B.L.E.) with expertise in brainstem anatomy confirmed the 

neuroanatomic location of each annotation. We upsampled the 

manual AAN nuclei labels to the resolution of the automated 

segmentation generated by the Bayesian algorithm (0.4 mm) to 

compare manual annotations to automated segmentations in the 

same imaging space.
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2.5   |   Probabilistic Atlas Construction and Bayesian 
Segmentation

2.5.1   |   Ex Vivo MRI Dataset

To optimize the accuracy of segmentation, a probabilistic atlas 

needs to describe not only the neuroanatomical structures of 

interest but also their surrounding tissue. With this purpose, 

we ran our sequence adaptive segmentation method (SAMSEG, 

Puonti et al. 2016) on the low- b image of the ex vivo scans to ob-

tain labels for 36 different brain structures, including the whole 

brainstem, left and right cerebellar gray and white matter, fourth 

ventricle, left and right ventral diencephalon (DC), and the left 

and right thalamus. After manual correction of errors made by 

SAMSEG, the manual segmentations of the arousal nuclei were 

overlaid on these automated segmentations to create composite 

label maps including both the brainstem nuclei of interest and 

surrounding structures. These composite maps were used to 

create the probabilistic atlas using a Bayesian technique, as de-

scribed in Section 2.5.2 below and illustrated in Figure 2. A fly- 

through visualization of the atlas mesh is provided in Video S1, 

which can be accessed through Zenodo.

2.5.2   |   Generative Model of Segmentations and Atlas 

Construction

The Bayesian segmentation framework relies on a generative 

model of brain MRI data, where neuroanatomy and model 

formation are decoupled (Ashburner and Friston  2005; Van 

Leemput et al. 1999). This approach enables the use of ex vivo 

data of superior quality to model neuroanatomy through a prob-

abilistic atlas, and the application of the atlas to automated seg-

mentation of in vivo scans or arbitrary MR contrast.

The generative model of Bayesian segmentation assumes that seg-

mentations are generated by a probabilistic atlas. Here we used the 

representation proposed by (Van Leemput 2009), where a probabi-

listic atlas in encoded as a tetrahedral mesh endowed with a defor-

mation model. Every mesh node has an associated vector with the 

probabilities of the different neuroanatomical classes happening 

at each location, and such probabilities can be evaluated at any 

other location with interpolation. The forward model is as follows: 

if xr is reference position of the mesh nodes, a deformed position x 

is first obtained from the probability distribution:

where � is a scalar representing the stiffness of the deforming 

mesh,  is the connectivity (topology) of the mesh, and U

t
 is 

a potential function that penalizes the deformation of the t- th 

tetrahedron, going to infinity as the Jacobian determinant goes 

to zero (if the tetrahedron folds onto itself), and thus preserving 

the topology of the mesh (Ashburner et al. 2000). Given the de-

formed mesh, and the label probabilities at each node � =
{
�t

}
, 

the probability of observing class k at a certain voxel location j is 

obtained with barycentric interpolation:

p(x | xr ,, �) ∝ exp

[
− �

∑

t

U

t (x, xr )

]

FIGURE 1    |    Histology- imaging correlations of AAN nuclei. Corresponding histological sections (first column) and/or 200 μm FLASH images 

(second column) were used for manually annotating AAN nuclei in 750 μm low- b diffusion MRI images from ex vivo brain specimens (third col-

umn). All five specimens were subsequently used for generating a probabilistic AAN atlas, which provides spatial priors for the automated Bayesian 

segmentation of AAN nuclei in MRI images of any contrast (fourth column). Zoomed panels are provided for the midbrain histological sections (M1 

and M2), and the pontine histological sections (P1 and P2), which display boundaries of each AAN nucleus.
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where r j is the spatial location of node n and �n is an interpo-

lation basis function attached to it. The generative model of 

segmentations is completed by assuming that a segmentation 

or label map L is obtained by sampling these label probabilities 

independently at each voxel location:

Building the atlas requires “inverting” the model with Bayesian 

inference, in order to estimate its parameters (reference position, 

label probabilities and topology) from a set of M example seg-

mentations 
{
Lm

}M
m=1

. Assuming no prior knowledge on the dis-

tribution of these parameters, the problem to solve is:

This maximization is difficult because of the need to optimize 

for the connectivity , which is a Bayesian model selection prob-

lem. We use a “greedy algorithm” that starts from a very dense 

mesh and slowly merges tetrahedra where appropriate, using 

Bayesian model selection. Further details can be found in (Van 

Leemput 2009).

2.5.3   |   Segmentation as Bayesian Inference

The full generative model of Bayesian segmentation combines 

two components: the prior and the likelihood. The prior de-

scribes the distribution of segmentations p(L | �, xr ,, �), as 

described in Section  2.5.2 above. The likelihood describes the 

distribution of observed image intensities given a segmentation 

L. Here we follow the classical model of Bayesian segmentation 

and assume that: (i) each class k has an associated Gaussian dis-

tribution with mean �k and variance �2
k
; and (ii) the intensity of 

voxel j is an independent sample of the Gaussian distribution as-

sociated with its label Lj. Therefore:

where I represents the observed image intensities, and 

p
(
Ij | �Lj , �

2
Lj

)
 is simply the Gaussian distribution 

(
Ij;�Lj , �

2
Lj

)

.

Using Bayesian inference, segmentation within this model can 

be posed as the following optimization problem:

pi(k | �, x ,) =
∑

n

�kn�n
(

r j
)

p(L | �, x,) =
∏

j

p
(
Lj | �, x,

)

{

�̂, x̂r , ̂,�̂
}
=argmax{�,xr ,C,�} p

(
�, xr ,, � |

{
Lm

})

=argmax{�,xr ,C,�} p
({
Lm

}
| �, xr ,, �

)

p
(
I | L,

{

�k

}

,
{

�
2
k

})

=
∏

j

p
(

Ij | �Lj , �
2
Lj

)

L̂ = argmaxL p(L | I ,�, xr ,, �)

FIGURE 2    |    Probabilistic atlas mesh of ascending arousal network nuclei. We show axial and oblique views (with coronal mesh sections) of the 

adaptive probabilistic atlas mesh used to encode spatial priors for all nuclei in the midbrain (top row) and pons (bottom row). Mesh node density cor-

responds to the relative amount of intensity information used for atlas construction and subsequent Bayesian segmentation. All SAMSEG- derived 

brain structures (including the whole brainstem) used for atlas construction are displayed with gray intensities.
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However, this requires marginalizing over model parameters, 

including the mesh deformation x, which is intractable. Instead, 

the standard approximation is to compute point estimates for 

the parameters, and then solve the segmentation. The objective 

function to optimize is:

where p
({

�k , �
2
k

})

 encodes prior knowledge on the Gaussian 

parameters, if available. Optimization is performed with a co-

ordinate ascent strategy, alternately maximizing for the atlas 

deformation x (with the L- BFGS algorithm, (Byrd et al. 1995)) 

and the Gaussian parameters 
{

�k , �
2
k

}
 (with the Expectation 

Maximization algorithm (Dempster et al. 1977)). It is straight-

forward to show that the final segmentation, as well as the ex-

pectation of volumes of the different structures, are obtained as 

a byproduct of the EM algorithm. Further details can be found 

in (Van Leemput 2009).

2.5.4   |   Implementation of the Segmentation Method

Because linear deformation aspects were not considered in 

the generative model, external affine alignment is required 

both for atlas building and segmentation. In atlas building, 

we align a binary mask consisting of the whole brainstem (in-

cluding arousal nuclei), left and right ventral DC, and thalami 

to the corresponding grouping of structures in the FreeSurfer 

atlas and consider only a cuboid enclosing the mask with a 

margin of 15 mm. In segmentation, we assume that the scan 

to segment has been run through the main FreeSurfer stream. 

Then, we can similarly co- register the same subset of struc-

tures in the FreeSurfer atlas with a binary mask including 

the thalami, ventral DC, and brainstem, as automatically esti-

mated by FreeSurfer.

A crucial aspect for segmentation robustness is to group 

structures with similar intensity profiles into superclasses. 

Therefore, all gray matter structures in the cerebrum (cerebral 

cortex, hippocampus, amygdala) share a single set of Gaussian 

parameters, as do cerebrospinal fluid (CSF) regions (lateral, 

third, and fourth ventricles) and brainstem structures (brain-

stem, ventral DC and arousal nuclei except for the PAG, which 

displays some contrast and has its own Gaussian distribution). 

The rest of the structures in the atlas have their own sets of 

Gaussian parameters, including the caudate nucleus, ac-

cumbens area, putamen, pallidum, thalamus, choroid plexus, 

cerebral white matter, cerebellar white matter, cerebellar cor-

tex, and background.

At segmentation, we also exploit the output of the main 

FreeSurfer stream in two ways. First, we use the coarse skull 

stripping provided by FreeSurfer to remove most of the extra-

cerebral tissue. Second, we use the automated segmentation 

(ASEG) to inform the Gaussian parameters for each superclass 

(except for the PAG) as with the median intensity of the voxels 

within each segment using a conjugate prior. Further details can 

be found in (Iglesias, Van Leemput, et al. 2015).

2.5.5   |   Evaluation Details

We utilized Dice scores and 95th- percentile Haussdorf distances 

(HD) for evaluating segmentation accuracy as compared to 

manual labeling for all AAN nuclei. For two binary masks Ma 

and Mb, Dice coefficients and HDs are defined as:

where | ⋅ | represents the cardinality (volume) of a region, d( ⋅ , ⋅ ) 

represents Euclidean distance and q95({ ⋅}) represents the 95th 

percentile (quantile) value of a set. We chose to evaluate accuracy 

with both Dice score and HD because of the relatively small size 

of the nuclei. Dice scores, which are mainly a volume- specific 

measure, tend to be highly variable with small shifts between 

compared regions. In contrast, HD is a boundary metric that is 

less impacted by the relative sizes of compared regions and thus 

provides a more robust measure of overall alignment between 

manual annotations and automated segmentations.

3   |   Results

3.1   |   Segmentation Accuracy for In Vivo T1 Scans 
From Control and TBI Subjects

Figure 3 shows the Dice coefficients and corresponding HDs for 

the 10 control subjects and 10 deformed/lesioned brainstems from 

patients with severe TBI. As expected, Bayesian segmentations 

of nuclei with thin cross- sectional areas, mainly the LC (Dice: 

0.38), LDTg (Dice: 0.18), and PBC (Dice: 0.19), displayed the low-

est degrees of direct overlap with manual annotations in control 

subjects. The rest of the AAN nuclei displayed consistently better 

overlap with mean Dice coefficients over 0.5. Although such de-

grees of overlap are low for standard segmentation algorithms, this 

is expected given that AAN nuclei are orders of magnitude smaller 

than most regions in the brain that are segmented by standard al-

gorithms. HD, a distance metric that captures boundary precision 

and is less sensitive to small changes in overlap (as compared to 

Dice coefficients), was less than 2 mm for all AAN nuclei except 

for the PBC in control subjects (HD: 2.17 mm), reflecting the high 

precision of the algorithm. Minimal alteration in Dice coefficients 

and HD was observed for the 10 TBI patients, with only slight de-

creases in segmentation accuracy and precision. This observation 

indicates that the Bayesian segmentation algorithm is, to a degree, 

robust to lesioning and deformation in the brainstem.

An example of AAN segmentations adapting to the patterns of 

tissue injury observed in TBI, which distort the local anatomy of 

AAN nuclei, is illustrated in Figure  4. Although the algorithm 

adapts well to tissue deformation and small lesions, we observed 

poorer performance with larger brainstem lesions, where the al-

gorithm erroneously “inpainted” (i.e., filled in voxels not belong-

ing to a segmented region with the segmentation label) the lesions 

with labels of proximal nuclei, such as in Figure 5. Representative 

{

x̂,
{

�̂k , �̂
2
k

}}
= argmax{x,{�k ,�2k}}

p
(
x,
{
�k , �

2
k

}
| I ,�, xr ,, �

)

argmax{x,{�k ,�2k}}
p(x | xr ,, �) p

({
�k , �

2
k

}) ∑

L

p
(
I | L,

{
�k , �

2
k

})
p(L | �, x,)

Dice
(
Ma,Mb

)
=
2 ⋅ ||Ma ∩Mb

|
|

|
|Ma

|
| +

|
|Mb

|
|

HD
(
Ma,Mb

)
= max

{
q95

({
inf
b∈Mb

{d(a, b)} | a ∈Ma

})
,

q95

({
inf
a∈Ma

{d(b, a)} | b ∈Mb

})}
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slices for manual annotations and Bayesian segmentations for 

each control and TBI subject are illustrated in Figure S4.

Finally, we synthetically downsampled the T1 MRI scans from 

the control subjects and TBI patients via Gaussian blurring and 

re- gridding via a kernel with a standard deviation set to mimic 

isotropic resolutions between the native resolution (1 mm) and 

3.5 mm with 0.25 mm increments (Figure 6). This synthetic resa-

mpling showed that segmentation of each nucleus, including to 

an extent small nuclei such as the LC, LDTg, and PBC, retained 

spatial accuracy comparable to the 1 mm resolution accuracies 

down to isotropic resolutions of 2–2.5 mm.

3.2   |   Test–Retest Analysis

We performed test–retest analysis for two different structural se-

quences to evaluate the algorithm's consistency and reproducibility 

in segmentation of the same anatomy under varying scanning con-

ditions. We observed robust test–retest reliability for both T1 and 

T2 MRI scans of subjects from the HCP “retest” dataset (Figure 7). 

Intraclass correlation coefficients (ICCs) are expected to be low for 

segmentations of small regions that are prone to fluctuations of es-

timated volume, but we observed excellent reliability (ICC > 0.75) 

for all AAN segmentations except for the right LC and right LDTg 

for analysis in the same domain (i.e., T1–T1 and T2–T2). We also 

observed ICC > 0.7 across domains (i.e., T1–T2 and T2–T1), with 

exceptions for the DR, PAG, LC and LDTg. While there was a small 

drop- off in ICC with decreasing segmentation volume, as shown in 

the volume- versus- ICC scatter plot (Figure 7A), this relationship 

was not statistically significant based on a Wald t- test for deviation 

from a zero- slope null hypothesis (R = 0.26, p = 0.33). This result 

indicates that Bayesian AAN segmentation reliability does not 

significantly decline with the spatial volume of the AAN nucleus. 

Furthermore, the drop- off in reliability estimates for the cross- 

domain experiments, especially for small nuclei such as the LC, 

FIGURE 3    |    Bayesian segmentation accuracy in control and TBI T1 MRI scans. Displayed in the left panel are box plots of Dice coefficients (top) 

and associated 95% Hausdorff distances (HD, bottom) from direct comparisons of automated segmentations and manual annotations of each AAN 

nucleus in 10 T1 MRI scans from healthy control subjects. Shown in the right panel are Dice scores (top) and HD (bottom) derived from 10 TBI pa-

tients with deformed and/or lesioned brainstems. Divisions of the box plots are the 25th percentile, median, and 75th percentile.

FIGURE 4    |    Bayesian segmentation of AAN nuclei in a T1 scan of a TBI patient's brainstem that is laterally deformed by a large medial temporal- 

lobe lesion. The brainstem also contains a hypointense hemorrhagic lesion in the pontine tegmentum, which is flanked by the parabrachial complex. 

The white arrows in each panel point to the location of the brainstem lesion, which was confirmed with susceptibility- weighted imaging.

 1
0
9
7
0
1
9
3
, 2

0
2
5
, 1

4
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/h

b
m

.7
0
3
5
7
 b

y
 B

rian
 E

d
lo

w
 , W

iley
 O

n
lin

e L
ib

rary
 o

n
 [1

1
/1

0
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se
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LDTg and PBC, suggests that segmentation is driven by MR con-

trast more than by global propagation of probabilistic atlas infor-

mation (e.g., through the registration step) for HCP- quality scans.

3.3   |   Classification Performance in AD

To demonstrate the clinical translatability of Bayesian AAN 

segmentation in group studies, and specifically its ability to 

classify individuals with neurodegenerative disease, we as-

sessed changes in spatial volume of each AAN nucleus in T1 

MRI scans between healthy and AD subjects from the ADNI 

dataset. Significant decreases in the volume of the whole 

brainstem, particularly rostral midbrain volumes, have been 

reported in individuals with AD (Lee et  al.  2015). To our 

knowledge, no volumetric analysis has been performed on 

AAN nuclei, even though histologic alterations in several 

AAN nuclei, including the LC and the raphe nuclei, have 

FIGURE 5    |    Inpainting of AAN segmentations in the presence of a large brainstem lesion. MRI scanning of patient 15 (see Supporting Information: 

Tables) revealed a large hemorrhagic lesion spanning the entire rostro- caudal axis of the midbrain, as seen in the sagittal view (left), bordering the 

PAG, mRt, PTg, and VTA. The lesion is hypointense in SWI and hyperintense in T1, as indicated by the red arrows (top axial panels). Automated 

segmentation of AAN nuclei in both the SWI and the T1 images yielded significant overlap of the PAG label, and to a lesser degree the VTA label, 

inside of the lesion margins (bottom axial panels).

FIGURE 6    |    Bayesian segmentation accuracy in synthetically resampled T1 MRI scans. Displayed in the left panels are Dice coefficients (top) and HDs 

(bottom) with corresponding standard deviation bars across all AAN nuclei in the 20 (10 control and 10 TBI) subjects with manual AAN annotations for 

varying degrees of spatial resampling. Resampling was performed from the native 1- mm isotropic resolution to 3.5- mm resolutions. The right column 

displays Dice coefficients (top) and HDs (bottom) for each individual AAN nucleus averaged across all subjects for the same synthetic resolution span.
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been implicated in AD progression (Chen et  al.  2022; Simic 

et al. 2009).

For our volume classification model, we implemented a linear 

discriminant analysis (LDA) classifier, due to its linearity and 

simplicity (Figure 8). This allows for the underlying volumes of 

AAN nuclei to more directly affect discriminatory performance, 

as opposed to the explicit parameterization of the classifier. We 

trained the LDA classifier with the volume of each segmented 

AAN nucleus as a separate feature with leave- one- out cross- 

validation. For classification analysis, we constructed a receiver- 

operating characteristic (ROC) curve by varying the threshold 

of the LDA likelihood ratio. We also implemented correspond-

ing ROC curves by varying the classification threshold for the 

volumes of the entire masked AAN, as well as the whole brain-

stem extracted from the FreeSurfer aseg package. For statistical 

comparison, we calculated areas under the curve (AUCs) for each 

classifier, as well as paired DeLong tests (DeLong et al. 1988) be-

tween pairs of classifiers.

Classification performance based on the respective ROC curves 

was comparably poor for the brainstem and whole- AAN masks 

with AUCs of 0.58 and 0.57, respectively. Conversely, the LDA 

classifier built on individual AAN nuclei outperformed both 

whole- brainstem and whole- AAN classification, with an AUC 

of 0.75 and a DeLong p < 0.001 for comparisons with both of the 

aforementioned classifiers. This significant boost in power of 

the LDA classifier is most likely attributable to the individual 

classification power of a large subset of the AAN nuclei. Eight 

out of the 16 nuclei (excluding their left–right subdivisions) 

showed volume reduction in the AD cohort that was statistically 

significant with Bonferroni correction (Table 3). Notably, all of 

the AAN nuclei with significant volume reduction have previ-

ously been shown to exhibit morphological and/or histological 

alterations in individuals with AD (Mufson et al. 1988; Parvizi 

et al. 1998, 2000, 2001).

3.4   |   Correlations With Susceptibility- Weighted 
Imaging in Patients With Severe TBI

To display the robustness of the algorithm to detecting 

changes in imaging markers consistent with structural pa-

thology in the brain, we showed correlations between SWI 

intensities in AAN masks and behavioral metrics in TBI pa-

tients. Specifically, we analyzed SWI scans in 15 of the 18 pa-

tients from the TBI dataset (see protocol in Section 2.2.3) to 

assess the correlation between the degree of structural AAN 

injury and functional measures of consciousness and clinical 

outcomes. Three SWI scans were excluded from analysis due 

to the presence of motion artifacts. We used SWI because this 

sequence is sensitive to and creates particularly high contrast 

in hemorrhagic lesions commonly observed in TBI (Bianciardi 

et al. 2021; Tao et al. 2015). Representative slices from all SWI 

scans are illustrated in Figure S5.

FIGURE 7    |    Test–retest analysis for volumes of segmented AAN 

nuclei. Shown in Panel (A) are the spatial volumes in log- space of seg-

mented AAN nuclei compared to their respective ICC values for T1–

T1 and T2–T2 comparisons. Each scatter point corresponds to the log 

of the average volume of each nucleus calculated between all subjects 

and scanning sessions (i.e., for both the “test” and the “retest” scans). 

T1 and T2- segmented nucleus volumes are shown as separate scatter 

points. Shown in panel (B) are the ICC values, along with a correspond-

ing heat map, for each segmented AAN nucleus for test–retest analysis 

between two MR contrasts: T1 in the test set and T1 in the retest set 

(T1–T1), T2 in the test set and T2 in the retest set (T2–T2), T1 in the test 

set and T2 in the retest set (T1–T2), and T2 in the test set and T1 in the 

retest set (T2–T1).

FIGURE 8    |    ROC analysis of AAN segmentations in Alzheimer's 

disease. Displayed are ROC curves for a classification task (between 

healthy control and AD subjects in the ADNI dataset) based on a vary-

ing threshold for the volumes of a brainstem mask (gray), the segmented 

whole- AAN mask (maroon), the likelihood ratio of a multi- feature LDA 

classifier trained on combined segmented AAN nuclei (black), as well as 

one-  or two- feature LDA each individual AAN nucleus. For individual 

(non- midline) AAN nuclei with left–right subdivisions, each subdivi-

sion was incorporated as a separate LDA classifier feature.
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Each SWI image was first normalized by the spatially averaged 

SWI intensity within the lateral ventricles. The lateral ven-

tricles for each patient were segmented using the FreeSurfer 

SynthSeg tool and then manually corrected to remove hy-

pointense regions of hemorrhage in the CSF. Normalized SWI 

intensities, calculated per voxel as the ratio of the raw SWI 

signal to the spatially averaged ventricular SWI signal, were 

used to standardize SWI signal across individual scans. We 

then calculated the spatial average of these normalized SWI 

intensities inside the union of all 10 (including left–right sub-

fields) segmented AAN nuclei (referred to as the “whole- AAN 

mask”). Finally, we compared the averaged normalized whole- 

AAN SWI signal to two metrics that were used to assess the 

patient's level of consciousness (LoC) at the time of scanning: 

the total GCS (GCS) score and the total Coma Recovery Scale- 

Revised (CRS- R) score (Giacino et  al.  2004). Assessment of 

both LoC metrics yielded strong positive correlations (R = 0.65 

and 0.60 for GCS and CRS- R, respectively) (Figure  9). Both 

correlations were statistically significant based on a zero- 

slope null hypothesis (p = 0.008 and 0.018 for GCS and CRS- R 

correlations, respectively).

4   |   Discussion

Historically, a major barrier to advancing knowledge about the 

brainstem's role in the physiology of human consciousness and 

the pathophysiology of DoC has been the lack of tools for identify-

ing and segmenting the tiny gray matter nuclei of the brainstem's 

AAN. Here, we develop and disseminate an automated segmenta-

tion tool and a probabilistic atlas of 10 AAN nuclei built from im-

munostaining data and meticulous manual segmentation of AAN 

nuclei in five ultra- high- resolution ex vivo MRI datasets. The AAN 

atlas generation process is built on a Bayesian framework, which 

can segment AAN nuclei in any MRI modality. We validated this 

tool with comparisons to in vivo manual annotations, as well as 

assessment of test–retest reliability. Further, we demonstrate the 

clinical translatability of the method by detecting volumetric 

changes of AAN nuclei in patients with AD, and by correlating 

AAN SWI intensities with behavioral measures of consciousness 

in patients with severe TBI.

The Bayesian AAN segmentation tool developed here builds 

upon recent efforts by progressing from segmentation of medul-

lary, pontine, and midbrain subregions (Iglesias, Van Leemput, 

et al. 2015) to segmentation of individual AAN nuclei. The core of 

the segmentation method is the probabilistic atlas mesh, which 

was constructed from five ex vivo human brain specimens. Both 

the accuracy and the spatial variation of the atlas mesh depend 

on the manual annotation of each AAN nucleus, which was per-

formed directly on low- b images with direct reference to corre-

sponding 200 μm FLASH images in all ex vivo brain specimens, 

along with corresponding histological sections in two of the five 

specimens. Although access to histology is preferable for the de-

lineation of contrast boundaries of small AAN nuclei, we have 

empirically found that FLASH contrast is sufficient for proper 

delineation of these nuclear borders. We observed correspond-

ing contrast boundaries between histology and FLASH space in 

seven of the 10 AAN nuclei, which provide adjacent locations for 

delineation of the remaining nuclei, as visualized in Figure S1. 

This correspondence between histological and high- resolution 

MRI contrast within ex vivo brainstems is corroborated by prior 

studies (Agostinelli et al. 2023; Donatelli et al. 2023). With fur-

ther quantification of error between ground- truth histology and 

high- resolution ex vivo MRI, we anticipate that future iterations 

of probabilistic atlases and companion brainstem segmentation 

methods may be able to rely on MRI contrast alone.

We demonstrate the accuracy of the AAN segmentation tool 

in manually traced in  vivo T1 data with guidance from a 

brainstem atlas. This manually traced dataset consisted of a 

10- subject control dataset as well as a 10- patient TBI data-

set where brainstems were either lesioned or deformed due 

to hemorrhagic and/or edematous intracranial lesions. Dice 

coefficients for larger AAN nuclei were all greater than 0.5. 

Although modest compared to previously published Dice co-

efficients for segmentations of larger brain structures (Fischl 

et  al.  2002; Iglesias, Van Leemput, et  al.  2015; Wasserthal 

et al. 2018), the reported AAN Dice coefficients are expected 

given the relatively small size of AAN nuclei. This challenge 

is especially relevant to the smaller nuclei (e.g., LC, LDTg, and 

PBC), whose cross- sections can be as thin as one voxel in cer-

tain regions (in terms of the 0.4 mm Bayesian segmentation 

volumes). Our reported AAN Dice coefficients and HDs are 

comparable to algorithms that segment small brain regions 

with volumes that are similar to those of AAN nuclei, such as 

hypothalamic and thalamic nuclei (Billot et al. 2020; Tregidgo 

et al. 2023). Notably, there was less variability in HDs (a metric 

that is largely invariant to ROI size) between segmentations 

of AAN nuclei and their corresponding manual annotations, 

with all average distances being below 2.5 mm. These low 

HDs imply that our automated segmentations retain spatial 

specificity for all AAN nuclei regardless of size.

The robustness of the Bayesian AAN segmentation tool is fur-

ther demonstrated by the test–retest reliability analyses. We 

compared the spatial volumes of segmented AAN nuclei in T1 

and T2 sequences of HCP subjects who underwent two sepa-

rate scanning sessions. Test–retest ICC scores for AAN volumes 

derived from the same sequence (T1–T1 and T2–T2) were all 

TABLE 3    |    Shown are the segmented AAN nuclei that displayed a 

statistically significant reduction in volume in the AD cohort compared 

to healthy controls based on a Bonferroni- corrected (n = 16) two- tailed 

Wilcoxon rank–sum test.

AAN nucleus p ROC AUC � volume (mm3)

VTA < 0.001 0.627 −18.1

Left PTg < 0.001 0.606 −3.4

Right PTg < 0.01 0.606 −3.7

Left PBC < 0.01 0.576 −1.5

Right PBC < 0.01 0.583 −1.7

PAG < 0.01 0.531 −10.7

Left PnO < 0.05 0.556 −2.4

Right PnO < 0.05 0.543 −2.0

Note: The third column displays the net reduction in cohort- averaged volumes 
for each AAN nucleus.
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greater than 0.8, with the exception of the LC and LDTg. Test–

retest ICC scores for AAN nuclei volumes derived from alternat-

ing sequences (T1–T2, and T2–T1) were greater than 0.7, with 

the exception of the LC, LDTg, DR, and PAG. For the majority 

of AAN nuclei, the high repeatability of volume measurement 

indicates that segmentations are leveraging actual MR contrast 

as opposed to noise. Notably, each of the nuclei with low ICCs 

(LC, LDTg, DR, and PAG) is positioned proximal to tissue- CSF 

boundaries, which are prone to high noise levels. Brainstem–

CSF boundaries, especially the dorsal brainstem—fourth 

ventricle border, have lower signal- to- noise ratios due to both 

partial- volume averaging and CSF pulsatility effects, which 

have been observed in dorsal brainstem nuclei such as the PAG 

and DR (Sclocco et al. 2018). These results suggest that further 

optimization of the segmentation tool is needed in future stud-

ies and that analyses of AAN nuclei located at brainstem–CSF 

boundaries should be interpreted with caution.

We performed proof- of- principle analyses of the segmentation 

of AAN nuclei in patients with AD and severe TBI to demon-

strate the clinical utility of the algorithm in disease classifi-

cation and correlation tasks. For AD analysis, our goal was 

to assess the utility of the algorithm as a disease- detection 

tool through its robustness in classifying subjects into either 

healthy control or AD categories solely with biomarkers de-

tected through automated segmentation. In patients with AD, 

the segmentation tool detected differences in AAN volumes, 

as compared to healthy controls. Neuropathologic changes in 

AAN nuclei have been reported in pathology studies of pa-

tients with AD (Rüb et al. 2016; Uematsu et al. 2018) but MRI 

studies of changes in the AAN are scarce (Galgani et al. 2023; 

Miyoshi et al. 2013; Takahashi et al. 2015), likely due to the 

difficulty of manual and automated AAN segmentation. 

Whereas classification of volumetric differences was similar 

for the brainstem and whole- AAN masks, there was a signifi-

cant boost in classification performance for the LDA classifier 

trained on individual AAN nuclei, with an AUC increase of 

0.18 (LDA classifier versus whole- AAN mask). In each AAN 

nucleus with a statistically significant change in volume, we 

observed a reduction in volume in the AD patient group. This 

volume loss is consistent with prior MRI studies, which re-

ported volumetric reduction in the midbrain and pontine teg-

mentum where most AAN nuclei are located (Ji et al. 2020; Lee 

et al. 2015). The VTA, which contains dopaminergic neurons 

that widely project to and modulate numerous cortical regions 

(Morales and Margolis  2017), displayed the most significant 

volumetric decrease in patients with AD. This observation 

is supported by previous imaging and neuropathology stud-

ies, which found that AD progression correlates with volume 

loss and dopamine neuron degeneration in the VTA (Bozzali 

et al. 2016, 2019; Gibb et al. 1989; De Marco and Venneri 2018). 

In our AD analysis, we note the potential limitation that all 

subjects within the AD subgroup were classified based on 

purely behavioral criteria. Additional confirmatory biomark-

ers for AD, such as amyloid positivity status with C11- PIB pos-

itron emission tomography, were only performed on a small 

subset of AD subjects in ADNI (n = 24). Possible misgrouping 

of subjects into the AD cohort may attenuate or distort group 

differences in brainstem or AAN nucleus volumes, thereby bi-

asing the ROC curves. Our results therefore reflect classifica-

tion of a behavioral phenotype rather than a biomarker- based 

definition of AD and should be interpreted accordingly.

Finally, we provide evidence for the utility of Bayesian AAN 

segmentation in an SWI- based analysis of patients with severe 

TBI. Specifically, we applied the segmentation method to SWI 

FIGURE 9    |    SWI AAN correlations with LoC. The average SWI intensity was calculated within the union of all 10 segmented AAN nuclei and 

normalized by the average SWI intensity within the lateral ventricles for each TBI patient scan. This normalized AAN SWI value was calculated for 

15 patients with acute TBI and correlated with their assigned LoC assessments: the total GCS score (left panel), and the total CRS- R score (right pan-

el). Coloring of the scatter points indicates each TBI patient's LoC classification: coma; VS, vegetative state; MCS, minimally conscious state; PTCS, 

post- traumatic confusional state. R values are derived from a linear least- squares regression, and p values indicate the significance of deviation of the 

regression lines from a zero- slope based on a two- tailed Wald t- test.
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scans and replicated prior observations that structural injury 

to AAN nuclei correlates with levels of consciousness and 

functional measures of recovery (Bianciardi et al. 2021; Edlow 

et  al.  2013; Parvizi and Damasio  2003; Snider et  al.  2019; 

Snider, Bodien, et al. 2020). As an indirect measure of struc-

tural injury, we show an association between the severity 

of hemorrhagic lesioning detected by SWI within the AAN 

and the LoC of each patient. Brainstem microhemorrhages 

detected by SWI, which are caused by traumatic shearing of 

arterioles and venules, are a hallmark finding of traumatic 

DoC because of their association with axonal shearing and 

disconnection of the neural networks that support conscious-

ness (Edlow et al. 2013). Microhemorrhages within AAN nu-

clei appear to have particular prognostic relevance (Bianciardi 

et  al.  2021; Izzy et  al.  2017). We observed a correlation be-

tween the normalized average SWI intensity of the AAN mask 

and LoC in a cohort of acute TBI patients, such that patients 

with lower LoC displayed lower SWI intensities (i.e., more 

microhemorrhages). This association between SWI intensity 

and LoC was observed with two behavioral assessment scores 

used to evaluate LoC in clinical practice: the GCS (R = 0.65) 

and the CRS- R (R = 0.60).

Our findings in patients with severe TBI complement those of 

a previously published SWI analysis of this same cohort, with 

the key distinction that the prior analysis required laborious and 

time- consuming manual segmentation, whereas the present 

analysis utilized a rapid, robust automated segmentation tool. 

The prior study showed associations between the total SWI le-

sion volume in the AAN and the duration of unresponsiveness 

in TBI patients (Bianciardi et al. 2021). SWI hypointensities in 

Bayesian- segmented AAN nuclei show superior correlations 

with both GCS and CRS- R, as compared to the prior study 

that used manually annotated AAN nuclei. Furthermore, our 

method displays comparable or superior correlations with the 

GCS and CRS- R, as compared to previously published diffusion 

MRI measures of structural integrity within the AAN (Jang and 

Kwon 2020), thalamus, internal capsule, and corpus callosum 

(Zhang et  al.  2017), and cortico- thalamic and cortico- cortical 

connections (Jang et al. 2023, 2024), as well as computed tomog-

raphy measures of brainstem perfusion (Xiong et al. 2022). Our 

analysis thus builds upon and extends these prior results in two 

ways: by showing strong associations between LoC and SWI 

contrast in the AAN, and by demonstrating the feasibility of a 

fully automated approach to measurement of AAN structural 

injury burden in TBI.

Several limitations should be considered when interpreting the 

Bayesian segmentation methods, as well as the experimental re-

sults. As with other algorithms that adaptively fit mesh- based 

atlases to segment small brain regions (Iglesias, Augustinack, 

et al. 2015; Iglesias et al. 2018; Puonti et al. 2016), this method 

provides a spatially sparse atlas mesh encoding in two scenarios. 

Sparse encoding either occurs inside atlas regions where anno-

tations from different specimens correspond well, and it takes 

fewer mesh elements to encode label information, or around 

boundaries where there is high labeling variability between 

specimens, resulting in more “uncertain” mesh encoding and 

effectively a smoothed atlas region. Coarse mesh configurations 

during atlas formation are therefore mainly observed for AAN 

nuclei with loosely defined nucleus boundaries (as evidenced 

in brainstem atlases (Olszewski and Baxter  1954; Paxinos 

et al. 2012)), which often correspond with regions of relatively 

homogenous MR contrast such as the LDTg, PTg, LC, MnR, and 

PnO, resulting in greater labeling variability. Segmentations 

of these nuclei are thus more uncertain because the algorithm 

relies on morphologic information and shape priors from the 

ex vivo atlas. Additionally, for lower quality MRI scans, the in-

tensity distributions for AAN nuclei flatten and reduce the ef-

fectiveness of Expectation Maximization in estimating model 

priors (i.e., mesh node positioning) and tissue likelihoods. 

Consequently, a greater emphasis is placed on global atlas regis-

tration, and thus morphological information for AAN nuclei is 

mainly derived from atlas information alone. We therefore rec-

ommend that morphologic and volumetric estimates be inter-

preted with caution, especially in lower resolution (i.e., in vivo) 

and/or noisy MR sequences.

The segmentation tool also has the potential to produce irreg-

ular AAN segmentations in highly deformed and/or lesioned 

brainstem regions, such as by inpainting large hyperintense 

hemorrhagic lesions in T1 MRI scans. This irregularity likely re-

flects a limitation of the probabilistic atlas design, where there is 

a trade- off between modeling high tissue distortion and extreme 

tissue intensities during atlas building but losing regularization 

strength for anatomically plausible atlas meshing. Furthermore, 

the likelihood for each tissue class in the probabilistic atlas is 

represented by a single Gaussian distribution, which limits the 

scope of model fitting in lesioned tissue. Future directions will 

involve incorporating distributions that better capture intensity 

variations in the presence of lesions and evaluating the utility of 

convolutional neural networks (CNNs) as an alternative AAN 

segmentation method for lesioned or deformed brainstems. 

CNNs may provide enhanced flexibility to capture disease- 

specific contrast patterns, which are infeasible to encode in a 

probabilistic atlas. Furthermore, the implementation of a CNN 

could improve segmentation of small AAN nuclei and modeling 

of partial- volume and CSF pulsatility effects, thereby enhancing 

the segmentation accuracy of AAN nuclei in close proximity to 

the fourth ventricle and cerebral aqueduct.

Additional limitations include the small sample size, restricted 

age distribution, and variable postmortem fixation intervals 

(PMI) and fixation- to- imaging durations (FID) for the ex  vivo 

data used to fit the probabilistic atlas, as well as the use of in vivo 

data for comparison of Bayesian segmentations to manual la-

bels (with only a single rater performing in vivo annotations). 

Although only five ex vivo specimens were used for atlas build-

ing, low sample numbers for the formation of generative models 

(i.e., the probabilistic AAN atlas) are common and often ben-

eficial, as to prevent model underfitting (Ng and Jordan 2001). 

Indeed, we observed convergence of our AAN atlas mesh with 

the inclusion of 3–4 specimens, with minimal alteration in mesh 

configuration between atlases, as illustrated in Figure S6. This 

observation indicates that low sample numbers of ex vivo brain 

specimens are sufficient for modeling the morphology of AAN 

nuclei. Furthermore, the relative rarity of normative ex  vivo 

brains without gross pathology, coupled with the time com-

mitment necessary for brain processing, makes the formation 

of a high- sample number atlas model challenging. This relative 

rarity is also why we chose in vivo MRI data for accuracy as-

sessment with comparison to manual annotations, recognizing 
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that ex vivo brain specimens with finer spatial resolutions would 

be more suitable. This approach allowed us to use all available 

ex vivo data to maximize the robustness of atlas formation, and 

thus segmentation as a whole. However, the restricted age dis-

tribution (50–83 years) of the brain specimens used for atlas for-

mation limits its robustness, due to the lack of incorporation of 

healthy young adult brains. Prior studies have shown that there 

is age- related atrophy of the midbrain and alterations in relax-

ation properties within brainstem tissue (Canales- Rodríguez 

et al. 2021; Iglesias, Van Leemput, et al. 2015; Luft 1999), which 

could have introduced atlas registration bias and affected the 

estimation of tissue intensity distributions during segmentation 

of scans from younger individuals. In future iterations, brain 

specimens of a younger age would allow for a more generalized 

AAN atlas, or even a young adult- specific atlas, to be used for 

segmentation.

Furthermore, we note that two of the five ex vivo brain speci-

mens had a past medical history of depression, which could also 

lead to AAN morphology that is not representative of a norma-

tive cohort for atlas construction. Prior studies have shown that 

depression is correlated with changes in brainstem connectiv-

ity (Song et al. 2014) as well as changes in neurotransmitter ex-

pression patterns (Wong et al. 2000) for subsets of AAN nuclei. 

However, we did not empirically observe significant volumetric 

or morphological differences in the AAN nuclei of these speci-

mens with respect to the other brain specimens. As such, given 

the challenge in obtaining truly “healthy” control brain speci-

mens for ex vivo analysis, we did not consider depression as an 

exclusion criterion due to its population prevalence.

We note that the PMI in our ex vivo cases ranged from < 24 h 

to 72 h, and the FID ranges from 20 to 93 months. Prior studies 

suggest that T2 relaxation, which is the dominant contrast in the 

low- b atlas images, changes with respect to PMI, and both T2 re-

laxation and overall brain volume can vary with respect to FID 

(Dawe et al. 2009; Kotrotsou et al. 2014; Shepherd et al. 2009). 

However, volumetric changes within the brainstem have been 

reported to be much less pronounced than in the cerebrum 

(Quester and Schröder 1997). As such, we expect inherent vari-

ability in the overall contrast of AAN nuclei (an effect addressed 

with our contrast- adaptive segmentation method), but minimal 

volumetric change with respect to FID. However, there may be 

spatial heterogeneity in how PMI and FID affect relative con-

trast between AAN nuclei. Given that the distribution of PMIs 

in our ex vivo cases is too narrow and coarse, we were unable 

to assess its effect on the spatial volumes of each AAN nucleus. 

Nevertheless, we did not observe any trend in AAN nucleus vol-

ume with respect to the FID, as shown in Figure S7. Both the 

PMI and FID ranges likely induce variability in the core anno-

tation process, which may manifest in the overall coarseness of 

the mesh that encodes the probabilistic atlas. Future iterations 

of the algorithm can benefit from quantification of labeling un-

certainty due to nuclear contrast and morphology (e.g., through 

multi- rater annotation) to better understand sources of variabil-

ity during atlas formation.

All manual annotations of AAN nuclei in both ex  vivo and 

in vivo MRI data were performed by a single rater. While label 

annotations were confirmed by a neuropathologist (H.C.K.) 

and neurologist (B.L.E.) with expertise in brainstem anatomy, 

single- rater annotation may have introduced bias in the assess-

ment of segmentation performance. This limitation can be ad-

dressed in future studies with a second rater re- annotating the 

in vivo dataset and performing inter- rater variability analysis.

Finally, our analysis is currently limited to T1, T2, and SWI MRI 

scans with spatial resolutions at or smaller than 1 mm (with 

the exception of the 1.8 mm axial resolution of the SWI scans). 

Synthetic downsampling (Figure 6) indicated that the segmenta-

tion accuracy of most AAN nuclei remained stable across an iso-

tropic resolution span of 1–2.5 mm. However, application of this 

algorithm to scans with resolutions coarser than 1 mm should 

be interpreted with caution, as Gaussian blurring only provides 

a limited approximation of partial voluming effects, signal- 

to- noise ratio properties, and point spread function properties 

(Robson et  al.  1997) observed in true lower resolution scans. 

Therefore, further assessment of the generalizability of this seg-

mentation method should be performed in other MRI domains 

to capture the effects of varying resolutions, noise levels, scan-

ning artifacts, and tissue contrasts on segmentation accuracy. 

These domains can include lower resolution diffusion and/or 

functional MRI sequences, emerging ultra- low- field sequences 

that are used in the intensive care unit (Sheth et al. 2021), and 

novel sequences that enhance contrast of deep brain structures 

(Sclocco et al. 2018).

5   |   Conclusion

We present a probabilistic atlas of brainstem arousal nuclei 

within the AAN, a subcortical network whose connections 

are believed to be critical for human consciousness (Brown 

et al. 2010; Edlow et al. 2021; Schiff and Plum 2000). We gen-

erated the AAN atlas from ex vivo MRI with histological guid-

ance, which allowed for highly accurate manual delineation of 

nuclei with boundaries that lacked MRI contrast. This proba-

bilistic atlas serves as a backbone for a Bayesian segmentation 

method that allows for automated delineation of AAN nuclei in 

MRI scans of any contrast. We show that the Bayesian method 

produces accurate AAN segmentations in both healthy and le-

sioned/deformed brainstems and is reliable across multiple MRI 

contrasts in a test–retest analysis. Furthermore, morphology 

and intensity information from AAN nuclei have the potential 

to serve as imaging- based biomarkers for AD and severe TBI. 

Future directions to improve the proposed AAN segmentation 

method will include utilizing multiple contrasts, which would 

be especially beneficial for nuclei with faint contrast boundaries, 

as well as the use of a CNN to supplement or replace Bayesian 

inference. We release the automated tool to advance the study of 

human brainstem anatomy in consciousness and its disorders.
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Supporting Information

Additional supporting information can be found online in the 
Supporting Information section. Video S1: Fly- through visualization of 
the adaptive probabilistic atlas mesh that encodes locations and intensity 
distributions of ascending arousal network nuclei in the brainstem. The 
mesh axis is displayed in the coronal plane. DR, dorsal raphe; LC, locus 
coeruleus; LDTg, laterodorsal tegmental nucleus; MnR, median raphe; 
mRt, midbrain reticular formation; PAG, periaqueductal gray; PBC, 
parabrachial complex; PnO, pontis oralis; PTg, pedunculotegmental nu-
cleus; VTA, ventral tegmental area. The full video can also be accessed 
through Zenodo. Figure S1: Axial tyrosine hydroxylate section in the 
midbrain (top left) and tryptophan hydroxylase section in the pons (bot-
tom left) with delineated boundaries of AAN nuclei, as compared to cor-
responding contrast boundaries in 200 μm FLASH images. Figure S2: 
Axial cross- section of representative subject from the TBI dataset with 
hemorrhagic lesions in the basis pontis (red arrows). SWI (right) provides 
greater sensitivity to such regions of hemorrhagic products from diffuse 
axonal injury than do standard structural sequences such as T1 (left) 
(Tao et al. 2015). Figure S3: Axial cross- sections of the midbrain (left) 
and pons (right) of a representative T1 MRI scan from the dataset used 
for accuracy analysis. We observed that a subset of AAN nuclei, such as 
the PAG, mRt, VTA, MnR and DR, possess enough T1 contrast at their 
neuroanatomic boundaries for reliable manual annotation (solid white 
line). The rest of the AAN nuclei were manually annotated with respect 
to the location of the aforementioned AAN nuclei, and with guidance 
from brainstem atlases. Figure S4: Representative T1 axial sections of 
all manual annotations for the 10 control subjects and 10 TBI patients 
used for assessment of segmentation (outlined) accuracy overlaid with 
corresponding Bayesian segmentations (semi- transparent). Figure S5: 
Representative SWI sagittal (top) and axial (bottom) sections of all pa-
tients from the TBI dataset. Outlined in red are the SWI scans excluded 
from correlation analysis due to the presence of significant SWI motion 
artifacts. Figure S6: Axial sections at the level of the rostral midbrain 
(left), caudal midbrain (middle), and mid- pons (right) for a probabilistic 
atlas mesh trained on three ex vivo brain specimens (top row), and the 
“complete” atlas mesh with five ex vivo brain specimens (bottom row). 
Both atlases show minimal change in mesh configuration and poste-
rior label morphology for each AAN nucleus, indicating convergence of 
the atlas with five ex vivo specimens. Figure S7: Relationship between 
the spatial volume of each individual AAN nucleus with respect to the 
fixation- to- imaging duration of each ex vivo brain specimen. Table S1: 
Information of demographics control subjects used for accuracy anal-
ysis. Table S2: Information of demographics and clinical examination 
findings for all TBI patients. CRSR- T, total coma recovery scale- revised; 
GCS- T, total Glasgow Coma Scale score; MCS−, minimally conscious 
state without evidence of language function; MCS+, minimally con-
scious state with evidence of language function; MVA, motor vehicle 
accident; Ped vs. car, pedestrian versus car; PTCS, post- traumatic con-
fusional state; VS, vegetative state. Further study and subject infor-
mation can be found in (Edlow et  al.  2017). Table  S3: Demographic 
information for all HCP subjects used for test–retest analysis. Exact ages 
for subjects are not included due to HCP de- identification policies. The 
provided inter- scan duration (in months) is provided by HCP according 
to the following rules. 2: 1–2 month duration, 3: 3- month duration, 4: 4- 
month duration, 5: 5- month duration. 6: 6- month duration. 7: 7- month 
duration. 8: 8–10 month duration. 11: 11- month duration. Subject 179548 
was excluded from analysis due to missing retest structural scans. 
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