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Introduction 

Alteration to the intrinsic network architecture of the brain is a significant feature of neurocognitive aging, 

but its measurement remains susceptible to several challenges. Recent advances can overcome these 

challenges to refine accounts of functional brain change in older adulthood. Multi-echo fMRI (ME-fMRI) 

can reliably distinguish between BOLD signal and noise1, a crucial consideration when age group 

differences may be attributable to either BOLD or noise. Individualized, participant-specific, parcellations 

that preserve individual variability in functional organization have shown higher internal validity for older 

adults compared to standard parcellations2 and improve behavioral predictions3. Here we leverage these 
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advances in combination with multivariate analytical approaches to provide a comprehensive account of 

the functional architecture of the aging brain. 

Methods 

Two ME-fMRI runs (TR=3000ms; TE1=13.7ms, TE2=30ms, TE3=47ms; 3mm isotropic voxels, 204 

volumes) were collected in 181 younger (M=22.59y) and 120 older (M=68.63y) healthy adults. Imaging 

data were minimally preprocessed and optimally combined prior to denoising with multi-echo independent 

components analysis1. Group prior individualized parcellation4 was then applied, where a group 

parcellation (400 parcels, 7 networks5) was refined by optimizing each participant's parcel boundaries with 

respect to their resting-state functional connectivity. 

We defined “BOLD dimensionality” as the number of BOLD-like components remaining in the denoised 

time series and compared across groups. Partial least squares was then used to identify group differences 

in whole-brain functional connectivity. Brain connectivity scores were calculated from the resulting matrix 

to represent the degree to which a given participant expressed the connectivity pattern. 

A subset of 283 participants (163 younger adults, 120 older adults) also underwent cognitive assessment 

involving tasks of episodic and semantic memory, executive function, and processing speed. Index scores 

were calculated for each task and associations with brain connectivity scores were examined. 

Results 

Younger adults displayed greater BOLD dimensionality than older adults (t(298)=16.83, p<.001; Cohen's 

d=1.81;Figure 1A). BOLD dimensionality decreased with age according to a power function (R2=.547; 

Figure 1B). Quantitative comparison of interregional functional connectivity between younger and older 

adults revealed a significant pattern of differences (Figure 2; permuted p=0.0001). Both increases and 

decreases were observed across the connectome (Figure 2E). Older adults demonstrated lower within-

network connectivity across all 7networks (Figure 2F) and greater between-network connectivity of the 

visual and somatomotor networks (Figure2G). A higher brain connectivity score for each participant 

conveys stronger adherence to the pattern of connectivity observed for their age group. When brain 

connectivity scores were related to cognition, a single negative correlation emerged with executive function 

in older adults (r(118)=-.350, p<.001): greater between-network and lower within-network connectivity 

was associated with worse executive function in older adults. 

Conclusion 

Using a combination of advanced approaches, we observed that functional integration, reflected in reduced 

BOLD signal dimensionality and increased between-network connectivity, is a core feature of brain aging. 

Early developmental trajectories of functional brain change are marked by increasing functional integration, 

associated with cognitive gains. Our findings demonstrate that functional integration, and resultant 

dedifferentiation of intrinsic networks, continues into older adulthood and becomes negatively associated 

with complex cognition. We suggest that this lifespan trajectory of network integration includes an 

inflection point, marking a transition from adaptive to maladaptive functional organization of the aging 

brain. 
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